Open Access ORIGINAL PAPER

Current trends in graft choice for anterior cruciate ligament reconstruction – part I: anatomy, biomechanics, graft incorporation and fixation

Armin Runer^{1,2*}, Laura Keeling¹, Nyaluma Wagala¹, Hans Nugraha³, Emre Anil Özbek^{1,4}, Jonathan D. Hughes^{1,5} and Volker Musahl^{1,5}

Abstract

Graft selection in anterior cruciate ligament (ACL) reconstruction is critical, as it remains one of the most easily adjustable factors affecting graft rupture and reoperation rates. Commonly used autografts, including hamstring tendon, quadriceps tendon and bone-patellar-tendon-bone, are reported to be biomechanically equivalent or superior compared to the native ACL. Despite this, such grafts are unable to perfectly replicate the complex anatomical and histological characteristics of the native ACL. While there remains inconclusive evidence as to the superiority of one autograft in terms of graft incorporation and maturity, allografts appear to demonstrate slower incorporation and maturity compared to autografts. Graft fixation also affects graft properties and subsequent outcomes, with each technique having unique advantages and disadvantages that should be carefully considered during graft selection.

Introduction

The primary goal of ACL-R is restoring antero-posterior and rotatory knee stability and function as closely as possible to the native joint. Despite advances in surgical techniques and rehabilitation, postoperative complications including graft rupture remain significant, yielding severe socioeconomic consequences and detrimental patient experience.

Revision surgery rates average between 2 and 10% [32, 39, 90, 91, 98, 128] but may be as high as 42% in high-level pivoting athletes [27, 29, 62, 96, 97]. Several well-known intrinsic and extrinsic risk factors, including patient age, activity level, and alignment influence postoperative outcomes and failure rates [54, 81, 96, 128]. Graft choice has been highlighted as an adjustable extrinsic factor with impact on failure of ACL-R [54, 96, 98].

Graft choices in ACL-R are broadly divided into autograft and allograft tissue. Hamstring tendon autograft (HT) is the most commonly used autograft among ACL surgeons worldwide, followed by bone-patellar-tendonbone (BPTB) and quadriceps tendon autograft (QT) [7]. When available, allograft presents an attractive alternative to autograft due to shorter surgical time and avoidance of donor site morbidity. Numerous allograft sources are available, including all-soft tissue as well as tendonbone options.

Armin Runer

armin.runer@tum.de

Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

^{*}Correspondence:

¹ Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, Pittsburgh, PA, USA

² Department for Sports Orthopaedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany

³ Department of Orthopaedic and Traumatology, Faculty of Medicine, University of Udayana, / Prof. Dr. I.G.N.G. Ngoerah General Hospital, Denpasar, Bali, Indonesia

⁴ Department of Orthopedics and Traumatology, Ankara University, Ankara Turkey

The following review aims to highlight current concepts of graft choice in ACL-R and provide the most upto-date evidence regarding the graft selection process for primary ACL-R. The first of two parts, this paper will discuss the anatomical, biomechanical, and histological properties as well as differences in graft incorporation and fixation techniques of the three most widely used autografts and allografts. The second part will focus on clinical outcomes, failure rates and complications associated with each graft option.

Graft choice rationale

Individualized graft choice is advised in modern ACL-R; no single graft is appropriate for all patients. When choosing the optimal graft for each patient, the surgeon must consider multiple patient-specific, physician-specific, and graft-specific factors. Such considerations include tissue availability, prior or concomitant injury, patient comorbidities, and surgeon experience. The optimal graft will offer an expeditious harvest with low morbidity, rapid graft integration, and mechanical and structural properties similar to the native ACL. Despite this, each graft option has unique anatomical and biomechanical characteristics with resultant advantages and disadvantages.

Anatomy and microstructural properties

Successful ACL-R necessitates reconstruction of native anatomy. A profound comprehension of ligamentous anatomy is the first step in the graft selection process.

Native ACL

ACL-R is predominantly performed as a single-bundle procedure. Quantitative measurements of the native ACL are patient-dependent with length, cross-sectional area (CSA), and volume ranging from 26 to 38 mm [2, 25, 36, 42, 118], 30 to 53 mm² [17, 25, 36, 109, 110, 119, 124] and 854 to 1858 mm³ [66, 122, 123], respectively. Descriptions of the femoral origin and tibial insertion sites vary in CSA and morphology The femoral CSA ranges between 60 and 130 mm², whereas a larger CSA (from 100 to 160 mm²) has been described for the tibial site [36, 55–58, 67, 68, 85, 107, 108, 114, 117].

Histologically, the native ACL demonstrates a high percentage of fibroblasts, blood vessels, and elastic fibrils, with a relatively low ratio of collagen fibrils to interstitium. These characteristics facilitate ACL function during daily activity, as they allow for regeneration and enable the ligament to withstand multiaxial stresses and fluctuating tensile strains [46].

Autograft

There are several different autograft options available for ACL-R, the most prevalent of which include BPTB, QT and HS. In general, each graft should be at least 7 cm long and have a midsubstance CSA similar to the native ACL.

The BPTB autograft represented historically the "gold standard" in ACL-R. The graft consists of an approximately 10 mm wide tendon strip obtained from the central third of the patellar tendon and includes two bone blocks, one each from the tibial tuberosity and the patella. Compared to HT it is more "flat" and has less collagen fibers compared to QT [45].

Unlike the BPTB autograft, multiple configurations are described for the QT autograft. It can be harvested with or without a bone block and as an approximately 10 mm wide full-thickness graft, or a 12×5 mm partial-thickness graft [34]. Histologically, the QT provides approximately 20% more collagen fibrils and a higher density of fibroblasts than a BPTB autograft of the same size, with comparable thickness of collagen fibrils and density of blood vessels [45]. Although some have cited concerns regarding mismatch between patient height and QT graft size, the literature demonstrates that QT autograft of sufficient length and thickness can be obtained in patients with small stature [40].

For HT autograft, harvested from the semitendinosus and/or gracilis tendon, there is wide variability in graft configurations ranging from one to eight strands, with quadrupled hamstring being the most common [75]. While BPTB and QT autograft are generally consistent in terms of length and thickness, hamstring tendons are correlated with patients' anthropometrics and sports activity level and are therefore patient-dependent [89, 121]. Graft size does not correlate with ACL footprint size [57]. Microscopic analysis of HT autograft demonstrates a 20% to 40% higher number of collagen fibrils and fibroblasts compared to patellar tendon autografts [47].

When comparing the CSA of the BPTB (33 – 61 mm²) [50, 57, 85, 105], HT (52 – 64 mm²) [50, 57, 85], and QT (71 – 91 mm²) [50, 85, 105] autografts to the intact ACL, the QT appears to most closely approximate the size of the native footprint. These descriptive data are supported by a cadaveric study comparing the microscopic anatomy of BPTB and QT autograft, showing more favorable femoral insertion width, insertion thickness, and graft bending angle for the QT autograft [64].

When comparing histological features of commonly used autografts, none can replace the complex ultrastructural characteristics of the native ACL [16, 46]. The native ACL has a lower collagen fibril to interstitium ratio, yet higher fibroblast, elastic fibril, and blood vessel density compared to all autograft options [46]. A high percentage

of collagen fibrils in tendon and ligament is associated with increased structural properties, but negatively influences elasticity and tendon constriction [46].

Allograft

Allografts can be generally subdivided into all-soft tissue and bone-tendon grafts. Soft tissue allografts include hamstring, tibialis anterior, tibialis posterior, peroneal tendon, and iliotibial band/fascia lata, while subtypes of bone-tendon allografts are BPTB, QT with patellar bone block, or Achilles tendon with calcaneal bone block. Similar to autograft options, BPTB allograft is the only allograft with bone blocks on either tendon side, and therefore the only option providing femoral and tibial bone-to-bone healing. While allografts have similar anatomical properties to their autograft correlates, the use of allograft offers the option of customizing graft size to the individual patient's anatomy.

Biomechanics

When considering biomechanical studies of the native ACL and its respective graft options, it is important to recognize that numerous factors influence outcomes, including experimental testing variables (temperature, storage, freezing and thawing time, specimen orientation, measurement techniques, loading rate), as well as patient or cadaver-specific factors (age, body weight, immobilization, or activities performed during the life of the donor) [126]. It is therefore inherent to biomechanical research that the results of individual studies vary greatly. It is also important to understand that biomechanical graft characteristics change during the healing process and therefore reflect only time zero. The following will review the biomechanical characteristics of the ACL in relation to various graft options, bearing in mind these limitations of biomechanical research.

Ultimate load to failure

Native ACL

The primary and secondary functions of the ACL are to prevent anterior translation and internal rotation of the tibia, respectively, in relation to the femur. Studies on structural properties of the native ACL report an age- and sex-dependent ultimate load to failure of 2160 ± 157 Newtons (N) in young adults [127]. These values decrease over time to 658 ± 129 N in specimens older than 60 years of age [18, 127].

Autograft

The ultimate load to failure of BPTB autograft ranges from 319 to 4389 N, with the highest load reported in 15 mm-wide grafts [75]. In clinical practice, 10 mm-wide

grafts with ultimate loads to failure of 1880 to 2664 N are typically used [26, 50, 111].

Similarly, the ultimate load to failure for a 10 to 12 mm-wide QT autograft ranges from 249 to 2186 N [50, 75, 111]. QT autograft with bone block, as well as full-thickness grafts appear to have higher ultimate loads to failure compared to all-soft tissue or partial thickness grafts [111].

For HT autograft, graft configuration (including total number of strands) correlates with graft size, which is in turn positively correlated with tensile strength [14]. Depending on graft configuration, graft diameters ranging from 6 mm to over 10 mm can be obtained with ultimate loads to failure ranging from 225 to 4590 N [50, 75, 111]. While a graft should have a minimum thickness of 8 mm, increased graft CSA is associated with an increased complication risk due to notch and PCL impingement [49, 74, 76, 89].

In a recent study by Hart et al. comparing the biomechanical properties of the three most common autografts, no statistically significant difference was found in ultimate load to failure among the graft options [50]. Thus, in terms of ultimate load to failure, all graft options appear to be viable substitutes for the native ACL.

Stiffness

To restore normal knee kinematics and physiologic joint forces the stiffness of the used graft should be similar to the native ACL. Supraphysiologic graft stiffness results in knee over-constraint and increased chondral stress, thereby increasing the risk of early onset osteoarthritis [48, 112].

Native ACL

Values for native ACL stiffness are reported to be 242 ± 28 N/mm in young adults. As with ultimate load to failure, these values decrease with age to 180 ± 25 N/mm in patients over 60 [127].

Autograft

For BPTB grafts, stiffness is reported to range from 158 to 685.2 N/mm, with values between 324 and 543 N/mm for grafts of 10 mm width [3, 75, 111]. For QT, stiffness is reported to be between 17.0 and 809.0 N/mm, with the smallest values seen by Noyes et al. when testing a quadriceps tendon-patellar retinaculum-patellar tendon graft construct [83]. A similarly wide range of stiffness (4.1 to 1148.0 N/mm) has been reported for HT autografts due to the variability in graft configurations [75].

When comparing all three graft options, Hart et al. [50] found a significantly higher stiffness for QT (672 \pm 210 N/mm) compared to four-stand HT (397 \pm 91 N/mm), yet similar values when compared to BTPB (543 \pm 73

N/mm). In contrast, Strauss et al. [111] reported higher cyclic loading stiffness values for HT (273 ± 49.5 N/mm) compared to BPTB (151 ± 25.5 N/mm) and QT (157 to 173 N/mm, depending on configuration).

In summary, graft stiffness is an important factor in graft choice for ACL-R. At time zero, none of the grafts can perfectly mimic the native ACL and little evidence exists thereafter. It seems that the HT graft has the highest tendency towards supraphysiologic stiffness.

Modulus, stress and strain

Native ACL

Modulus of elasticity for the native ACL is reported to be between 111 and 124 MPa [18, 84]. This is generally lower than the reported moduli for ACL graft options; a recent systematic review including 26 biomechanical studies of commonly used grafts reported higher ranges for each of the three most prevalent autograft options, as well the majority of allografts [75].

Autograft

Modulus, maximum stress, and failure strain for BPTB range from 184 to 337.8 MPa, 21.6 to 101.3 MPa, and 0.16 to 25%, respectively. For QT, the same values range from 153.0 to 255.3 MPa, 9.7 to 23.9 MPa, and 2.0 to 10.7%. HT values are reported to be as high as 144.8 to 904.0 MPa, 65.6 to 156.0 MPa, and 0.3 to 33.0%, respectively [92].

Allograft

As with autografts, the structural and mechanical characteristics of allografts differ depending on harvest site. Common allograft options frequently meet or exceed the biomechanical properties of the native ACL [65]. For single-stranded grafts, the lowest and highest load to failure are reported for tibialis anterior and quadriceps tendon allografts, respectively [5, 65, 105]. While gender does not appear to have an effect on allograft properties [61], older donor age has been negatively correlated with biomechanical characteristics [13, 41, 61, 116].

Allograft processing

In addition to donor characteristics, graft preservation techniques alter the properties of allograft tendon. These changes are important to recognize when considering the use of allograft. Gamma irradiation and electron beam (E-beam) are employed for inactivation of bacteria and other pathogens. Mixed effects have been reported for low-dose gamma irradiation (<20 kGy), with little [28, 130] or no decrease in stiffness and ultimate load to failure [11, 41, 78]. However, a positive dose-dependent

effect of high irradiation is seen on mechanical tendon properties, altering the integrity of the tendon with a decrease in ultimate load to failure of up to 74% compared to non-irradiated tissue [9, 33, 38, 78, 104]. Similarly, E-beam irradiation produces detrimental effects on structural properties [43, 52], albeit to a lesser extent than gamma irradiation [51]. Varied biomechanical effects have also been reported for chemical sterilization including peracetic acid, BioCleanse1 (RTI Surgical, Inc), ethylene oxide, or supercritical CO2 treatment [5, 8, 30, 61, 100, 101, 103].

Methods of preservation also influence tendon properties [37, 113]. Freezing a tendon at -80 °C increases the mean diameter of collagen fibrils, while the mean number of fibrils decreases. Biomechanically, this corresponds to a decrease in ultimate load (decrease of 82% compared to fresh frozen), ultimate stress (decrease of 70% compared to fresh frozen), and ultimate strain, yet an increase in stiffness [37]. Furthermore, multiple freeze—thaw cycles appear to affect histological and biomechanical tendon properties, although study results remain contradictory [19, 63, 115]. Alternative preservation techniques like glycerolization, lyophilization, or preservation with chloroform—methanol extraction may also lead to a 50% decrease in the structural and mechanical properties of the allograft [43, 133].

In summary, fresh frozen allograft tissue may meet or exceed the biomechanical characteristics of the native ACL, however various sterilization and preservation methods alter histological and biomechanical graft properties. While low dose irradiation appears to have little influence on graft biomechanics, moderate- to high-dose irradiation and chemical processing have detrimental tissue effects and should be avoided when possible.

Graft incorporation

Much of our current knowledge about graft incorporation derives from animal studies. It should be noted that animal studies carry potential bias, including time-dependent differences in soft tissue remodeling compared to humans. Furthermore, postoperative immobilization and physiotherapy, both recognized in optimizing graft incorporation, cannot often be performed in animals. Therefore, these studies should be used cautiously when treating and advising patients [65].

Graft remodeling occurs within the first six months postoperatively and may continue for years [1, 22, 71, 125, 131]. During this time, the implanted tendon undergoes a remodeling where the composition and organization of the tendon are adapted to new intraarticular conditions and functions [102]. When compared to BPTB autograft, HT autograft appears to have delayed progression (6 to 12 months vs. 12 to 24 months) of remodeling

[1, 31, 60, 95, 99]. Similarly, in one study superior graft maturity was observed for QT autograft with bone block versus HT autograft at six months postoperatively [73], although a second study reported no difference [87]. The results of earlier studies of graft maturation have been recently challenged using quantitative MRI UTE-T2* and T2* mapping, showing no difference in maturation between BPTB and HT autograft [22]. Furthermore, graft maturation has not been correlated with clinical outcome and rotatory knee stability one and two years after HT ACL-R [69, 71].

Graft-to-bone integration is necessary for optimal healing and resemblance of the physiologic ACL [88]. Early histological and biomechanical animal studies suggest that bone-to-bone healing is faster and stronger compared to tendon-to-bone healing (8 vs. 12 weeks) [6, 73, 88, 93, 120]. However, this widely accepted theory has been disputed by a recent in vivo human study showing similar graft-tunnel motion at 6 and 12 months postoperatively between BPTB and HT autograft, suggesting that bone-to-bone may not be necessarily faster than ligament-to-bone healing [59].

Animal studies also suggest that higher graft-to-bone contact area has positive effects on tendon—bone healing, especially in the early period after ACL-R [12, 23, 132]. Additionally, healing is sensitive to dynamic changes in graft forces, with early high forces on the ACL graft appearing to impair graft-tunnel osseointegration [72].

Graft fixation

With the advent of faster and more aggressive rehabilitation protocols, the primary aim of graft fixation is to provide stability of the graft within the bone tunnel until graft-to-bone incorporation is accomplished. Optimal graft fixation minimizes graft elongation, longitudinal ("bungee effect") and transverse ("windshield wiper") graft movement, as well as influx of synovial fluid into the bone tunnel by maximizing strength, stiffness, stability, and durability. Despite advancements in graft fixation methods, the fixation point remains the weakest link in the graft-to-bone interface and is therefore crucial to the success of ACL-R.

Several direct and indirect methods of graft fixation have been described. Direct methods include absorbable and non-absorbable interference screws, cross pins, staples, washers, or hardware-free press-fit fixation, whereas indirect devices include fixed or adjustable suspensory cortical button fixation. At this point, there is no clear consensus regarding the "best" graft fixation method, as each option has advantages and

disadvantages. Several recent meta-analyses [20, 24, 53, 82, 106] and network meta-analyses [53, 129] have demonstrated no superiority in clinical or patient-reported outcomes (PROs) of any particular fixation method. However, a recent meta-analysis of 40 studies found improved arthrometric stability and fewer graft ruptures but no difference in PROs using suspensory-compared to interference screw fixation for quadrupled HT autograft [15].

Advantages of suspensory fixation include the ease and simplicity of technique, the possibility of a thicker graft with higher graft-to-bone contact area resulting in superior graft incorporation, as well as excellent fixation strength and stiffness [23, 35, 77, 79]. When comparing fixed loop- to adjustable loop suspension, superior biomechanical results have been observed for fixed loop devices [86, 92]. Compared to interference screws, less tunnel widening is seen when using suspensory fixation or cross pins, which becomes relevant in revision cases [21, 35, 80]. Graft elongation as well as longitudinal and transverse movements appear to be lower using interference screws, especially when screws are placed close to the joint surface [70, 77, 94].

Hardware-free press-fit techniques have been reported, showing promising outcomes comparable to traditional techniques with low rates of tunnel enlargement [4, 10, 44, 106].

Conclusion

Graft choice has a considerable influence on postoperative outcomes and remains an easily adjustable surgical factor affecting graft rupture and reoperation rates. When comparing anatomical, histological, and morphological features of commonly used grafts to the native ACL, none can perfectly replicate the complex characteristics of the native ACL. Biomechanically, however, both autograft and allograft show equivalent or increased characteristics compared to the native ACL and represent viable options for ACL-R. There further remains limited evidence as to the superiority of one graft in terms of maturation and incorporation, yet the available literature suggests that allograft may demonstrate slower graft incorporation and maturity compared to autograft tissue. Finally, methods of graft fixation have unique advantages and disadvantages that affect graft properties, and should be carefully considered when selecting the optimal graft for each patient.

		Advantages	Weaknesses
Anatomy	QT	QT up to 20% more collagen fibers and a higher density of fibroblasts than BPTB Possibility of different harvest configurations Largest CSA	Sometimes short graft
	ВРТВ	Possibility to harvest with bone block on each site	Smallest CSA of all grafts Not able to replace the complex ultras- tructural character- istics of the native ACL
	нт	Possibility of different graft configurations to individualize graft thickness	Unpredictable tendon thickness
	Allograft	All possible graft configurations depending on the used tendon Customizing graft size to the indi- vidual patient's anatomy	Processed tissue
Biomechanics	QT	Similar load to failure than BPTB but higher than native ACL	Two layers may sometimes separate
	ВРТВ	Similar load to failure than QT but higher than native ACL	Bone tendon junction may have tendinosis
	нт	Common graft configurations exceed the load to failure of the native ACL	Load to failure depending on graft configuration Tendency to supra- physiologic stiffness if multistrand graft
	Allograft	Highest load to failures reported for the quadriceps tendon allograft	Older donor age negatively correlated with biomechanical characteristics Graft sterilization and preservation techniques influ- ence biomechanical graft properties

		Advantages	Weaknesses
Graft Incorporation	QT	Faster incorpora- tion compared to HT autograft Possibility for one- sided bone-to- bone healing	Short tendon- tunnel interface
	ВРТВ	Faster incorpora- tion compared to HT autograft Possible faster graft incorpora- tion due to bone— to–bone healing	Size mismatch
	НТ		Delayed incorpora- tion compared to BPTB and QT no possibility of bone-to-bone healing
	Allograft		Slower graft maturation process as well as slower onset and rate of revascularization

Acknowledgements

Emre Anil Özbek, MD was awarded a grant by ESSKA- University of Pittsburgh Sports Medicine Clinical and Research Fellowship, and The Scientific and Technological Research Council of Turkey (TUBITAK) outside the submitted work.

Authors' contributions

The author(s) read and approved the final manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL. Study performed at Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, Pittsburgh, PA, USA.

Declarations

Competing interests

The authors declare no conflict of interest with the present study.

Received: 23 January 2023 Accepted: 22 March 2023 Published online: 01 April 2023

References

- Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9:394–405
- Abebe ES, Kim JP, Utturkar GM, Taylor DC, Spritzer CE, Moorman CT 3rd, Garrett WE, DeFrate LE (2011) The effect of femoral tunnel placement on ACL graft orientation and length during in vivo knee flexion. J Biomech 44:1914–1920
- 3. Aicale R, Maffulli N (2020) Combined medial patellofemoral and medial patellotibial reconstruction for patellar instability: a PRISMA systematic review. J Orthop Surg Res 15:529
- Akoto R, Müller-Hübenthal J, Balke M, Albers M, Bouillon B, Helm P, Banerjee M, Höher J (2015) Press-fit fixation using autologous bone in the tibial canal causes less enlargement of bone tunnel diameter in

- ACL reconstruction a CT scan analysis three months postoperatively. BMC Musculoskelet Disord 16:200
- Almqvist KF, Jan H, Vercruysse C, Verbeeck R, Verdonk R (2007) The tibialis tendon as a valuable anterior cruciate ligament allograft substitute: biomechanical properties. Knee Surg Sports Traumatol Arthrosc 15:1326–1330
- Amano H, Tanaka Y, Kita K, Uchida R, Tachibana Y, Yonetani Y, Mae T, Shiozaki Y, Horibe S (2019) Significant anterior enlargement of femoral tunnel aperture after hamstring ACL reconstruction, compared to bone–patellar tendon–bone graft. Knee Surg Sports Traumatol Arthrosc 27:461–470
- Arnold MP, Calcei JG, Vogel N, Magnussen RA, Clatworthy M, Spalding T, Campbell JD, Bergfeld JA, Sherman SL, Group ACLS (2021) ACL Study Group survey reveals the evolution of anterior cruciate ligament reconstruction graft choice over the past three decades. Knee Surg Sports Traumatol Arthrosc 29:3871–3876
- Baldini T, Caperton K, Hawkins M, McCarty E (2016) Effect of a novel sterilization method on biomechanical properties of soft tissue allografts. Knee Surg Sports Traumatol Arthrosc 24:3971–3975
- Balsly CR, Cotter AT, Williams LA, Gaskins BD, Moore MA, Wolfinbarger L
 Jr (2008) Effect of low dose and moderate dose gamma irradiation on
 the mechanical properties of bone and soft tissue allografts. Cell Tissue
 Bank 9:289–298
- Barié A, Sprinckstub T, Huber J, Jaber A (2020) Quadriceps tendon vs. patellar tendon autograft for ACL reconstruction using a hardware-free press-fit fixation technique: comparable stability, function and returnto-sport level but less donor site morbidity in athletes after 10 years. Arch Orthop Trauma Surg 140:1465–1474
- Bhatia S, Bell R, Frank RM, Rodeo SA, Bach BR Jr, Cole BJ, Chubinskaya S, Wang VM, Verma NN (2012) Bony incorporation of soft tissue anterior cruciate ligament grafts in an animal model: autograft versus allograft with low-dose gamma irradiation. Am J Sports Med 40:1789–1798
- Biset A, Douiri A, Robinson JR, Laboudie P, Colombet P, Graveleau N, Bouguennec N (2022) Tibial tunnel expansion does not correlate with four-strand graft maturation after ACL reconstruction using adjustable cortical suspensory fixation. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-022-07051-x
- Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effects of donor age and strain rate on the biomechanical properties of bonepatellar tendon-bone allografts. Am J Sports Med 22:328–333
- Boniello MR, Schwingler PM, Bonner JM, Robinson SP, Cotter A, Bonner KF (2015) Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthroscopy 31:1084–1090
- Browning WM 3rd, Kluczynski MA, Curatolo C, Marzo JM (2017) Suspensory versus aperture fixation of a quadrupled hamstring tendon autograft in anterior cruciate ligament reconstruction: a meta-analysis. Am J Sports Med 45:2418–2427
- Castile RM, Jenkins MJ, Lake SP, Brophy RH (2020) Microstructural and mechanical properties of grafts commonly used for cruciate ligament reconstruction. J Bone Joint Surg Am 102:1948–1955
- Cavaignac E, Pailhe R, Murgier J, Reina N, Lauwers F, Chiron P (2014)
 Can the gracilis be used to replace the anterior cruciate ligament in the knee? A cadaver study. Knee 21:1014–1017
- Chandrashekar N, Mansouri H, Slauterbeck J, Hashemi J (2006) Sexbased differences in the tensile properties of the human anterior cruciate ligament. J Biomech 39:2943–2950
- Chen L, Wu Y, Yu J, Jiao Z, Ao Y, Yu C, Wang J, Cui G (2011) Effect of repeated freezing-thawing on the Achilles tendon of rabbits. Knee Surg Sports Traumatol Arthrosc 19:1028–1034
- Chen W, Li H, Chen Y, Jiang F, Wu Y, Chen S (2019) Bone-patellar tendon-bone autografts versus hamstring autografts using the same suspensory fixations in ACL reconstruction: a systematic review and meta-analysis. Orthop J Sports Med 7:232596711988531
- 21. Chiang ER, Chen KH, Chih-Chang Lin A, Wang ST, Wu HT, Ma HL, Chang MC, Liu CL, Chen TH (2019) Comparison of tunnel enlargement and clinical outcome between bioabsorbable interference screws and cortical button-post fixation in arthroscopic double-bundle anterior cruciate ligament reconstruction: a prospective, randomized study with a minimum follow-up of 2 years. Arthroscopy 35:544–551
- 22. Chu CR, Williams AA (2019) Quantitative MRI UTE-T2* and T2* show progressive and continued graft maturation over 2 years in human

- patients after anterior cruciate ligament reconstruction. Orthop J Sports Med 7:2325967119863056
- 23. Colombet P, Graveleau N, Jambou S (2016) Incorporation of hamstring grafts within the tibial tunnel after anterior cruciate ligament reconstruction: magnetic resonance imaging of suspensory fixation versus interference screws. Am J Sports Med 44:2838–2845
- Colvin A, Sharma C, Parides M, Glashow J (2011) What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: a meta-analysis. Clin Orthop Relat Res 469:1075–1081
- 25. Cone SG, Howe D, Fisher MB (2019) Size and shape of the human anterior cruciate ligament and the impact of sex and skeletal growth: a systematic review. JBJS Rev 7:e8
- Cooper DE, Deng XH, Burstein AL, Warren RF (1993) The strength of the central third patellar. tendon graft: a biomechanical study. Am J Sports Med 21:818–824
- Csapo R, Runer A, Hoser C, Fink C (2021) Contralateral ACL tears strongly contribute to high rates of secondary ACL injuries in professional ski racers. Knee Surg Sports Traumatol Arthrosc 29:1805–1812
- Curran AR, Adams DJ, Gill JL, Steiner ME, Scheller AD (2004) The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts. Am J Sports Med 32:1131–1135
- Della Villa F, Hagglund M, Della Villa S, Ekstrand J, Walden M (2021) High rate of second ACL injury following ACL reconstruction in male professional footballers: an updated longitudinal analysis from 118 players in the UEFA elite club injury study. Br J Sports Med 55:1350–1356
- Dong S, Huangfu X, Xie G, Zhang Y, Shen P, Li X, Qi J, Zhao J (2015)
 Decellularized versus fresh-frozen allografts in anterior cruciate ligament reconstruction: an in vitro study in a rabbit model. Am J Sports Med 43:1924–1934
- Falconiero RP, DiStefano VJ, Cook TM (1998) Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans. Arthroscopy 14:197–205
- Faltstrom A, Kvist J, Hagglund M (2021) High risk of new knee injuries in female soccer players after primary anterior cruciate ligament reconstruction at 5- to 10-year follow-up. Am J Sports Med 49:3479–3487
- Fideler BM, Vangsness CT Jr, Lu B, Orlando C, Moore T (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23:643–646
- Fink C, Herbort M, Abermann E, Hoser C (2014) Minimally invasive harvest of a quadriceps tendon graft with or without a bone block. Arthrosc Tech 3:e509-513
- Fu C-W, Chen W-C, Lu Y-C (2020) Is all-inside with suspensory cortical button fixation a superior technique for anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. BMC Musculoskeletal Disorders 21(1):445
- Fujimaki Y, Thorhauer E, Sasaki Y, Smolinski P, Tashman S, Fu FH (2016)
 Quantitative in situ analysis of the anterior cruciate ligament: length,
 midsubstance cross-sectional area, and insertion site areas. Am J Sports
 Med 44:118–125
- Giannini S, Buda R, Di Caprio F, Agati P, Bigi A, De Pasquale V, Ruggeri A (2008) Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. Int Orthop 32:145–151
- Gibbons MJ, Butler DL, Grood ES, Bylski-Austrow DI, Levy MS, Noyes FR (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9:209–218
- Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G, Drogset JO (2014) Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 42:2319–2328
- Goto K, Duthon VB, Menetrey J (2022) Anterior cruciate ligament reconstruction using quadriceps tendon autograft is a viable option for small-statured female patients. Knee Surg Sports Traumatol Arthrosc 20:2258, 2363
- 41. Greaves LL, Hecker AT, Brown CH Jr (2008) The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Am J Sports Med 36:1358–1366
- Guenoun D, Vaccaro J, Le Corroller T, Barral PA, Lagier A, Pauly V, Coquart B, Coste J, Champsaur P (2017) A dynamic study of the anterior cruciate ligament of the knee using an open MRI. Surg Radiol Anat 39:307–314

- Gut G, Marowska J, Jastrzebska A, Olender E, Kaminski A (2016) Structural mechanical properties of radiation-sterilized human Bone-Tendon-Bone grafts preserved by different methods. Cell Tissue Bank 17:277–287
- 44. Häberli J, Heilgemeir M, Valet S, Aiyangar A, Overes T, Henle P, Eggli S (2022) Novel press-fit technique of patellar bone plug in anterior cruciate ligament reconstruction is comparable to interference screw fixation. Arch Orthop Trauma Surg 142:1963–1970
- Hadjicostas PT, Soucacos PN, Berger I, Koleganova N, Paessler HH (2007) Comparative analysis of the morphologic structure of quadriceps and patellar tendon: a descriptive laboratory study. Arthroscopy 23:744–750
- Hadjicostas PT, Soucacos PN, Koleganova N, Krohmer G, Berger I (2008) Comparative and morphological analysis of commonly used autografts for anterior cruciate ligament reconstruction with the native ACL: an electron, microscopic and morphologic study. Knee Surg Sports Traumatol Arthrosc 16:1099–1107
- Hadjicostas PT, Soucacos PN, Paessler HH, Koleganova N, Berger I (2007) Morphologic and histologic comparison between the patella and hamstring tendons grafts: a descriptive and anatomic study. Arthroscopy 23:751–756
- Halonen KS, Mononen ME, Toyras J, Kroger H, Joukainen A, Korhonen RK (2016) Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee. J Biomech 49:2566–2576
- Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999)
 Hamstring tendon grafts for reconstruction of the anterior cruciate
 ligament: biomechanical evaluation of the use of multiple strands and
 tensioning techniques. J Bone Joint Surg Am 81:549–557
- 50 Hart D, Gurney-Dunlop T, Leiter J, Longstaffe R, Eid AS, McRae S, MacDonald P (2022) Biomechanics of hamstring tendon, quadriceps tendon, and bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: a cadaveric study. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-022-03247-6
- Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S (2015) High-dose electron beam sterilization of soft-tissue grafts maintains significantly improved biomechanical properties compared to standard gamma treatment. Cell Tissue Bank 16:219–226
- Hoburg AT, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S (2010) Effect of electron beam irradiation on biomechanical properties of patellar tendon allografts in anterior cruciate ligament reconstruction. Am J Sports Med 38:1134–1140
- 53. Hurley ET, Gianakos AL, Anil U, Strauss EJ, Gonzalez-Lomas G (2019) No difference in outcomes between femoral fixation methods with hamstring autograft in anterior cruciate ligament reconstruction a network meta-
- Hurley ET, Mojica ES, Kanakamedala AC, Meislin RJ, Strauss EJ, Campbell KA, Alaia MJ (2022) Quadriceps tendon has a lower re-rupture rate than hamstring tendon autograft for anterior cruciate ligament reconstruction - a meta-analysis. J Isakos 7:87–93
- Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology.
 Knee Surg Sports Traumatol Arthrosc 23:3157–3162
- Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Size correlation between the tibial anterior cruciate ligament footprint and the tibia plateau. Knee Surg Sports Traumatol Arthrosc 23:1147–1152
- 57. Iriuchishima T, Ryu K, Yorifuji H, Aizawa S, Fu FH (2014) Commonly used ACL autograft areas do not correlate with the size of the ACL footprint or the femoral condyle. Knee Surg Sports Traumatol Arthrosc 22:1573–1579
- Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH (2014)
 Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22:207–213
- Irvine JN, Arner JW, Thorhauer E, Abebe ES, D'Auria J, Schreiber VM, Harner CD, Tashman S (2016) Is there a difference in graft motion for bone-tendon-bone and hamstring autograft ACL reconstruction at 6 weeks and 1 year? Am J Sports Med 44:2599–2607
- Janssen RPA, Van Der Wijk J, Fiedler A, Schmidt T, Sala HAGM, Scheffler SU (2011) Remodelling of human hamstring autografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1299–1306

- Jones DB, Huddleston PM, Zobitz ME, Stuart MJ (2007) Mechanical properties of patellar tendon allografts subjected to chemical sterilization. Arthroscopy 23:400–404
- Jordan MJ, Doyle-Baker P, Heard M, Aagaard P, Herzog W (2017) A retrospective analysis of concurrent pathology in ACL-reconstructed knees of elite alpine ski racers. Orthop J Sports Med 5:2325967117714756
- Jung HJ, Vangipuram G, Fisher MB, Yang G, Hsu S, Bianchi J, Ronholdt C, Woo SL (2011) The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J Orthop Res 29:1193–1198
- Kinoshita T, Hashimoto Y, Iida K, Nakamura H (2022) ACL graft matching: cadaveric comparison of microscopic anatomy of quadriceps and patellar tendon grafts and the femoral ACL insertion site. Am J Sports Med 50:2953–2960
- Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR Jr (2017) What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res 475:2412–2426
- Lee BH, Jangir R, Kim HY, Shin JM, Chang M, Kim K, Wang JH (2017)
 Comparison of anterior cruciate ligament volume after anatomic double-bundle anterior cruciate ligament reconstruction. Knee 24:580–587
- Lee BH, Seo DY, Bansal S, Kim JH, Ahn JH, Wang JH (2016) Comparative magnetic resonance imaging study of cross-sectional area of anatomic double bundle anterior cruciate ligament reconstruction grafts and the contralateral uninjured knee. Arthroscopy 32(321–329):e321
- Lee JK, Lee S, Seong SC, Lee MC (2015) Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and threedimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 23:2297–2305
- Li H, Chen J, Li H, Wu Z, Chen S (2017) MRI-based ACL graft maturity does not predict clinical and functional outcomes during the first year after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:3171–3178
- Lubowitz JH, Schwartzberg R, Smith P (2015) Cortical suspensory button versus aperture interference screw fixation for knee anterior cruciate ligament soft-tissue allograft: a prospective, randomized controlled trial. Arthroscopy 31:1733–1739
- 71. Lutz PM, Achtnich A, Schütte V, Woertler K, Imhoff AB, Willinger L (2022) Anterior cruciate ligament autograft maturation on sequential postoperative MRI is not correlated with clinical outcome and anterior knee stability. Knee Surg Sports Traumatol Arthrosc 30:3258–3267
- Ma R, Schar M, Chen T, Sisto M, Nguyen J, Voigt C, Deng XH, Rodeo SA (2018) Effect of dynamic changes in anterior cruciate ligament in situ graft force on the biological healing response of the graft-tunnel interface. Am J Sports Med 46:915–923
- Ma Y, Murawski CD, Rahnemai-Azar AA, Maldjian C, Lynch AD, Fu FH
 (2015) Graft maturity of the reconstructed anterior cruciate ligament 6
 months postoperatively: a magnetic resonance imaging evaluation of
 quadriceps tendon with bone block and hamstring tendon autografts.
 Knee Surg Sports Traumatol Arthrosc 23:661–668
- Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531
- Malige A, Baghdadi S, Hast MW, Schmidt EC, Shea KG, Ganley TJ (2022)
 Biomechanical properties of common graft choices for anterior cruciate ligament reconstruction: a systematic review. Clin Biomech (Bristol, Avon) 95:105636
- Mariscalco MW, Flanigan DC, Mitchell J, Pedroza AD, Jones MH, Andrish JT, Parker RD, Kaeding CC, Magnussen RA (2013) The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) cohort study. Arthroscopy 29:1948–1953
- Mayr R, Heinrichs CH, Eichinger M, Coppola C, Schmoelz W, Attal R (2015) Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: adjustable-length loop cortical button or interference screw. Am J Sports Med 43:1380–1385
- McGilvray KC, Santoni BG, Turner AS, Bogdansky S, Wheeler DL, Puttlitz CM (2011) Effects of (60)Co gamma radiation dose on initial structural

- biomechanical properties of ovine bone–patellar tendon–bone allografts. Cell Tissue Bank 12:89–98
- Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22:660–668
- Monaco E, Fabbri M, Redler A, Gaj E, De Carli A, Argento G, Saithna A, Ferretti A (2019) Anterior cruciate ligament reconstruction is associated with greater tibial tunnel widening when using a bioabsorbable screw compared to an all-inside technique with suspensory fixation. Knee Surg Sports Traumatol Arthrosc 27:2577–2584
- Mouarbes D, Dagneaux L, Olivier M, Lavoue V, Peque E, Berard E, Cavaignac E (2020) Lower donor-site morbidity using QT autografts for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 28:2558–2566
- Nie S, Zhou S, Huang W (2022) Femoral fixation methods for hamstring graft in anterior cruciate ligament reconstruction: a network metaanalysis of controlled clinical trials. PLoS One 17:e0275097
- 83. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352
- Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58:1074–1082
- Offerhaus C, Albers M, Nagai K, Arner JW, Hoher J, Musahl V, Fu FH
 (2018) Individualized anterior cruciate ligament graft matching.
 in vivo comparison of cross-sectional areas of hamstring, patellar, and
 quadriceps tendon grafts and ACL insertion area. Am J Sports Med
 46:2646–2652
- Onggo JR, Nambiar M, Pai V (2019) Fixed-versus adjustable-loop devices for femoral fixation in anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 35:2484–2498
- Panos JA, Devitt BM, Feller JA, Klemm HJ, Hewett TE, Webster KE (2021)
 Effect of time on MRI appearance of graft after ACL reconstruction: a
 comparison of autologous hamstring and quadriceps tendon grafts.
 Orthop J Sports Med 9:23259671211023510
- 88. Park MJ, Lee MC, Seong SC (2001) A comparative study of the healing of tendon autograft and tendon-bone autograft using patellar tendon in rabbits. Int Orthop 25:35–39
- Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH (2013) Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1111–1118
- Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM, Fevang JM (2014) Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004–2012. Am J Sports Med 42:285–291
- 91. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M (2014) Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the danish registry of knee ligament reconstruction. Am J Sports Med 42:278–284
- Ranjan R, Gaba S, Goel L, Asif N, Kalra M, Kumar R, Kumar A (2018)
 In vivo comparison of a fixed loop (EndoButton CL) with an adjustable loop (TightRope RT) device for femoral fixation of the graft in ACL reconstruction: a prospective randomized study and a literature review.
 J Orthop Surg 26:230949901879978
- 93. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendonhealing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75:1795–1803
- Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34:1790–1800
- Rougraff B, Shelbourne KD, Gerth PK, Warner J (1993) Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med 21:277–284
- 96. Runer A, Csapo R, Hepperger C, Herbort M, Hoser C, Fink C (2020) Anterior cruciate ligament reconstructions with quadriceps tendon autograft result in lower graft rupture rates but similar patient-reported outcomes as compared with hamstring tendon autograft: a comparison of 875 patients. Am J Sports Med 48:2195–2204

- 97. Runer A, Suter A, di Sarsina TR, Jucho L, Gfoller P, Csapo R, Hoser C, Fink C (2022) Quadriceps tendon autograft for primary anterior cruciate ligament reconstruction show comparable clinical, functional, and patient reported outcome measurements, but lower donor site morbidity compared with hamstring tendon autograft: a matched-pairs study with a mean follow-up of 6.5 years. J ISAKOS. https://doi.org/10.1016/j. jisako.2022.08.008
- Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ (2017)
 Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res 475:2459–2468
- Sanchez M, Anitua E, Azofra J, Prado R, Muruzabal F, Andia I (2010) Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy 26:470–480
- Scheffler SU, Gonnermann J, Kamp J, Przybilla D, Pruss A (2008) Remodeling of ACL allografts is inhibited by peracetic acid sterilization. Clin Orthop Relat Res 466:1810–1818
- Scheffler SU, Scherler J, Pruss A, Von Versen R, Weiler A (2005) Biomechanical comparison of human bone-patellar tendon-bone grafts after sterilization with peracetic acid ethanol. Cell Tissue Banking 6:109–115
- Scheffler SU, Unterhauser FN, Weiler A (2008) Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:834–842
- Schimizzi A, Wedemeyer M, Odell T, Thomas W, Mahar AT, Pedowitz R (2007) Effects of a novel sterilization process on soft tissue mechanical properties for anterior cruciate ligament allografts. Am J Sports Med 35:612–616
- 104. Schwartz HE, Matava MJ, Proch FS, Butler CA, Ratcliffe A, Levy M, Butler DL (2006) The effect of gamma irradiation on anterior cruciate ligament allograft biomechanical and biochemical properties in the caprine model at time zero and at 6 months after surgery. Am J Sports Med 34:1747–1755
- Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J (2016) Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthroscopy 32:71–75
- Shanmugaraj A, Mahendralingam M, Gohal C, Horner N, Simunovic N, Musahl V, Samuelsson K, Ayeni OR (2021) Press-fit fixation in anterior cruciate ligament reconstruction yields low graft failure and revision rates: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 29:1750–1759
- Siebold R, Ellert T, Metz S, Metz J (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy 24:585–592
- Siebold R, Ellert T, Metz S, Metz J (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24:154–161
- Siebold R, Schuhmacher P, Fernandez F, Smigielski R, Fink C, Brehmer A, Kirsch J (2015) Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site. Knee Surg Sports Traumatol Arthrosc 23:3136–3142
- 110. Smigielski R, Zdanowicz U, Drwiega M, Ciszek B, Ciszkowska-Lyson B, Siebold R (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23:3143–3150
- 111. Strauss MJ, Miles JW, Kennedy ML, Dornan GJ, Moatshe G, Lind M, Engebretsen L, LaPrade RF (2022) Full thickness quadriceps tendon grafts with bone had similar material properties to bone-patellar tendonbone and a four-strand semitendinosus grafts: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 30:1786–1794
- Suggs J, Wang C, Li G (2003) The effect of graft stiffness on knee joint biomechanics after ACL reconstruction—a 3D computational simulation. Clin Biomech (Bristol, Avon) 18:35–43
- Suhodolcan L, Brojan M, Kosel F, Drobnic M, Alibegovic A, Brecelj J (2013) Cryopreservation with glycerol improves the in vitro biomechanical characteristics of human patellar tendon allografts. Knee Surg Sports Traumatol Arthrosc 21:1218–1225

- 114. Suruga M, Horaguchi T, Iriuchishima T, Yahagi Y, Iwama G, Tokuhashi Y, Aizawa S (2017) Morphological size evaluation of the mid-substance insertion areas and the fan-like extension fibers in the femoral ACL footprint. Arch Orthop Trauma Surg 137:1107–1113
- 115. Suto K, Urabe K, Naruse K, Uchida K, Matsuura T, Mikuni-Takagaki Y, Suto M, Nemoto N, Kamiya K, Itoman M (2012) Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell Tissue Bank 13:71–80
- Swank KR, Behn AW, Dragoo JL (2015) The effect of donor age on structural and mechanical properties of allograft tendons. Am J Sports Med 43:453–459
- 117. Tampere T, Van Hoof T, Cromheecke M, Van der Bracht H, Chahla J, Verdonk P, Victor J (2017) The anterior cruciate ligament: a study on its bony and soft tissue anatomy using novel 3D CT technology. Knee Surg Sports Traumatol Arthrosc 25:236–244
- 118. Taylor KA, Cutcliffe HC, Queen RM, Utturkar GM, Spritzer CE, Garrett WE, DeFrate LE (2013) In vivo measurement of ACL length and relative strain during walking. J Biomech 46:478–483
- 119. Thein R, Spitzer E, Doyle J, Khamaisy S, Nawabi DH, Chawla H, Lipman JD, Pearle AD (2016) The ACL Graft has different cross-sectional dimensions compared with the native ACL: implications for graft impingement. Am J Sports Med 44:2097–2105
- 120. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17:461–476
- Treme G, Diduch DR, Billante MJ, Miller MD, Hart JM (2008) Hamstring graft size prediction: a prospective clinical evaluation. Am J Sports Med 36:2204–2209
- 122. Triantafyllidi E, Paschos NK, Goussia A, Barkoula NM, Exarchos DA, Matikas TE, Malamou-Mitsi V, Georgoulis AD (2013) The shape and the thickness of the anterior cruciate ligament along its length in relation to the posterior cruciate ligament: a cadaveric study. Arthroscopy 29:1963–1973
- Tuca M, Hayter C, Potter H, Marx R, Green DW (2016) Anterior cruciate ligament and intercondylar notch growth plateaus prior to cessation of longitudinal growth: an MRI observational study. Knee Surg Sports Traumatol Arthrosc 24:780–787
- 124. Vermesan D, Prejbeanu R, Trocan I, Birsasteanu F, Florescu S, Balanescu A, Abbinante A, Caprio M, Potenza A, Dipalma G, Cagiano R, Inchingolo F, Haragus H (2015) Reconstructed ACLs have different cross-sectional areas compared to the native contralaterals on postoperative MRIs. A pilot study. Eur Rev Med Pharmacol Sci 19:1155–1160
- Vogl TJ, Schmitt J, Lubrich J, Hochmuth K, Diebold T, Del Tredici K, Südkamp N (2001) Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen. Eur Radiol 11:1450–1456
- 126. Woo SL, Debski RE, Withrow JD, Janaushek MA (1999) Biomechanics of knee ligaments. Am J Sports Med 27:533–543
- 127. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225
- 128. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q (2015) A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 22:100–110
- 129. Yan L, Li JJ, Zhu Y, Liu H, Liu R, Zhao B, Wang B (2021) Interference screws are more likely to perform better than cortical button and cross-pin fixation for hamstring autograft in ACL reconstruction: a Bayesian network meta-analysis. Knee Surg Sports Traumatol Arthrosc 29:1850–1861
- 130. Yanke AB, Bell R, Lee A, Kang RW, Mather RC 3rd, Shewman EF, Wang VM, Bach BR Jr (2013) The biomechanical effects of 1.0 to 1.2 Mrad of gamma irradiation on human bone-patellar tendon-bone allografts. Am J Sports Med 41:835–840
- Zaffagnini S, De Pasquale V, Marchesini Reggiani L, Russo A, Agati P, Bacchelli B, Marcacci M (2007) Neoligamentization process of BTPB used for ACL graft: histological evaluation from 6 months to 10 years. Knee 14:87–93

- 132. Zhao F, Hu X, Zhang J, Shi W, Ren B, Huang H, Ao Y (2019) A more flattened bone tunnel has a positive effect on tendon–bone healing in the early period after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:3543–3551
- 133. Zimmerman MC, Contiliano JH, Parsons JR, Prewett A, Billotti J (1994) The biomechanics and histopathology of chemically processed patellar tendon allografts for anterior cruciate ligament replacement. Am J Sports Med 22:378–386

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com

ORIGINAL PAPER Open Access

Current trends in graft choice for primary anterior cruciate ligament reconstruction – part II: In-vivo kinematics, patient reported outcomes, re-rupture rates, strength recovery, return to sports and complications

Armin Runer^{1,2*}, Laura Keeling¹, Nyaluma Wagala¹, Hans Nugraha^{1,3}, Emre Anil Özbek^{1,4}, Jonathan D. Hughes^{1,5} and Volker Musahl^{1,5}

Abstract

Postoperative patient satisfaction after anterior cruciate ligament reconstruction (ACL-R) is influenced mainly by the degree of pain, the need for reoperation, and functional performance in daily activities and sports. Graft choice has shown to have an influence on postoperative outcomes after ACL-R. While patient reported outcomes measurements do not differ between graft options, evidence shows that normal knee kinematics is not fully restored after ACL-R with an increase in postoperative anterior tibial translation (ATT). Postoperative graft rupture rates seem to favor bone-patella-tendon-bone (BPTB) and quadriceps tendon (QT) autografts over HT or allografts. While return to sports rates seem comparable between different graft types, postoperative extensor strength is reduced in patients with BPTB and QT whereas flexion strength is weakened in patients with HT. Postoperative donor site morbidity is highest in BPTB but comparable between HT and QT. With all graft options having advantages and drawbacks, graft choice must be individualized and chosen in accordance with the patient.

*Correspondence:

Armin Runer

armin.runer@tum.de

Introduction

Pain, graft survival, and functional performance during daily activity and sport all significantly affect patient satisfaction following anterior cruciate ligament (ACL) reconstruction (ACL-R). Details about anatomy, biomechanics, graft fixation and incorporation commonly used autograft and allografts are reviewed in part I of this current concept paper. The following review will further highlight in-vivo analyses, patient reported outcomes (PROs), re-rupture rates, flexion and extension strength recovery, return to sport, and complications of the quadriceps tendon (QT), bone-patella-tendon-bone (BPTB) and hamstring tendon (HT) autograft as well as allografts. Unless otherwise specified, for the purposes of uniform comparison only studies using anteromedial portal drilling technique were included, as clinical and

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

¹ Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, Pittsburgh, PA, USA

² Department for Sports Orthopaedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany

³ Department of Orthopaedic and Traumatology, Faculty of Medicine, University of Udayana, / Prof. Dr. I.G.N.G. Ngoerah General Hospital, Denpasar, Bali, Indonesia

⁴ Department of Orthopedics and Traumatology, Ankara University, Ankara Turkey

⁵ Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

functional outcomes may differ with more traditional techniques [16].

In-vivo analyses

Measuring in-vivo knee kinematics during daily and athletic activities is essential to detect abnormal joint mechanics and microinstability which may not present during routine clinical testing, yet may lead to accelerated joint degeneration [4].

ACL-R has been shown to have a significant impact on knee kinematics, with reconstructed knees more externally rotated and less flexed than the contralateral limb in the early stance phase of the running cycle one year postoperatively [13, 44, 121, 122]. Additionally, graft length was found to be 4 - 6 mm shorter compared to the native ACL at 6 and 24 months postoperatively throughout early stance [122]. While the clinical influence has yet to be determined, it can be hypothesized that a shorter and stiffer graft results in a more externally rotated tibia due to the oblique ACL fiber direction. This in turn may lead to an over-constrained joint in the early postoperative period [122]. However, over time there is an apparent decrease in external tibial rotation paired with graft lengthening and an increase in anterior tibial translation (ATT), indicating a stretching and functional remodeling of the graft [122].

Overall, the effect of different graft types on in-vivo kinematics remains inconclusive. For HT ACL-R an increased ATT during activity was reported and linked to a reduction in hamstring force [55]. Similarly, evidence shows that normal knee kinematics does not fully reestablish under weightbearing conditions after BPTB ACL-R even though anterior knee laxity measurements were restored during KT-1000 arthrometer testing [97]. A comparative study of HT- and BPTB ACL-R using dynamic biplanar radiography revealed no statistically significant difference in postoperative ATT between both graft options [54]. However, although not statistically significant, a higher ATT was measured in the HT group compared with BPTB during walking at 6 weeks. This again may be attributed to less posterior hamstring pull on the tibia in the early postoperative phase, which resolves after physical therapy and strength restoration [54].

Patient reported outcome measures

Postoperative patient satisfaction is undoubtedly the most important outcome when it comes to ACL-R. While there is an abundance of short-, mid- and long-term literature comparing BPTB and HT, little is known about postoperative outcomes of QT. Although BPTB autograft has long been the gold standard in ACL-R,

QT is gaining in popularity, especially among patients injured in pivoting sports and in those with concomitant medial collateral ligament injuries [7, 108].

To date, only two randomized controlled trials (RCTs) have compared clinical outcomes of BPTB and QT. Randomizing 51 patients using a transtibial ACL-R technique revealed no statistically significant difference in any of the reported PROs at two years postoperative [73]. Similar, no long-term differences were observed between quadriceps-tendon-patella bone autograft or BPTB in 60 athletes (Tegner > 6). In contrast, a multicenter, observational study reported significantly higher Lysholm scores for QT when compared to BPBT, yet similar results when compared to HT [92]. Several cohort studies as well as recent systematic reviews and meta-analyses support the findings of these randomized trials, demonstrating no significant difference in PROs between patients treated with QT or BPTB [21, 62, 86, 91, 100].

When comparing BPTB to HT, three recent RCTs demonstrated no significant differences between subjective IKDC and Lysholm scores [53, 88, 112]. Additionally, a multicenter RCT with 16-year follow-up revealed no statistical differences in PROs between both graft options [10]. These RCTs have been reinforced by several large registry studies [35, 102, 107, 113], systematic reviews, and meta-analyses [21, 90, 133] showing no difference in PROs between patients treated with BPTB or HT. Similarly, no significant differences have been reported among other mid- to long-term studies using the transtibial approach [14, 34, 46, 112, 130].

The reported results of QT and HT are similar to those of BPTB and HT. In a recent prospective RCT, Lind et al. [71] compared 50 patients treated with QT to 49 patients treated with HT and found no significant differences in PROs. Similarly, no significant differences in PROs were reported in competitive football players [82]. A registry study including 479 patients and two matched-pair analysis further revealed no significant difference between PROs following isolated QT or HT ACL-R in short- and after minimum five years [109–111]. Recent smaller observational studies as well as systematic reviews and metanalyses have confirmed the findings of the above-mentioned comparative studies, showing comparable PROs between patients treated with both graft options [2, 9, 21, 86, 91, 95, 99, 127].

While allografts were historically associated with inferior clinical and patient reported outcomes, recent studies using non-irradiated and non-chemically treated allografts produce comparable patient satisfaction rates and PROs to autografts [11, 24, 36, 59, 128, 135].

Graft failure rates

Graft failure is multifactorial. Risk factors include male gender [105], younger age [57, 58, 62, 89, 105, 109], family history [17, 137], ethnicity [137], lower body mass index (BMI) [137], increased posterior tibial slope [25, 28, 40, 131], high activity level [17, 57, 58, 109] and concomitant injuries [137]. As many of these factors are non-modifiable, operative technique and graft choice remain easily adjustable factors influencing postoperative outcomes and re-rupture rates [31, 98, 102, 106, 107, 113, 133, 137].

When comparing graft failure rates, care must be taken with terminology, as the terms "graft rupture," "failure rates," and "revision surgery" are often used interchangeably and interpreted inconsistently. Particularly in registry studies, "revision surgery" may be reported rather than graft ruptures, as determined by postoperative MRI or clinical examination. This may lead to underestimation of true re-rupture rates. In terms of re-rupture, BPTB has long been considered the gold standard, demonstrating decreased rates compared to HT and allograft [3, 35, 65, 74, 76-79, 124, 137]. However, RCTs and observational studies comparing BPTB and QT report similar graft rupture rates, ranging from 1.4-7.5% and 2.0-5.1%, respectively [8, 37, 45, 100]. These results have been supported in recent systematic reviews and meta-analyses showing no significant difference between both graft options [21, 91].

There is extensive evidence on ACL revision surgery rates between BPTB and HT. Out of eleven registry studies, nine reported a significant relationship between revision rate and graft choice, with patients undergoing HT ACL-R having an up to two times higher risk of revision [3, 35, 65, 74, 76–79, 124]. In contrast, four systematic reviews and meta-analyses reported no statistically significant difference in re-rupture and reoperation rates; however, a tendency toward higher re-rupture rates for HT remains [21, 41, 90, 133].

When comparing failure rates of QT to HT, high-level evidence is still lacking. Two RCTs including 99 and 51 patients respectively, found no significant difference between both graft options in the short term [47, 71]. These results are supported by other short-term observational studies in adult [2, 15, 60, 111, 127] and pediatric patients [99]. Contrary to the above-mentioned findings, a recent registry study including 875 patients showed a 2.7 times higher probability of revision surgery when an HT (4.9%) was used compared to QT (2.8%). This difference was even more pronounced in high-level athletes (Tegner activity score \geq 7), with revision surgery rates of 11.1% and 5.0%, respectively. In less active patients, low revision rates with minor differences were observed (QT: 3.0%, HT: 4.2%). Interestingly, patients with QT showed no difference in the rate of ipsilateral revision surgery and the number of contralateral ACL-R compared to those treated with HT. This indicates a possible superiority of the QT to lower the graft rupture risk to the level of the uninjured, contralateral leg [109]. Similarly, a recent mid-term, matched-pair comparative study revealed no statistically significant difference between both graft options (QT: 17.8%; HT: 22.2%). In highly active patients (Tegner-activity-level \geq 7), the re-rupture rate increased to 37.5% in the HT group while remaining constant in the QT cohort (22.2%). Results of recent systematic reviews and meta-analyses are inconclusive, reporting either higher [52, 94] or equal [21, 91, 120] re-rupture and revision surgery rates for HT versus QT.

There is extensive but contradicting evidence comparing graft rupture rates between allograft and autograft. Allografts are thought to have higher rupture and reoperation rates, with an up to sixfold increased risk of failure when compared to autograft, especially in young and active patients [18, 58, 63, 72, 96, 126]. Sterilization using radiation, especially with doses greater than 20 kGy, has been implicated as a likely cause due to unfavorable biomechanical effects on the tissue [66, 115].

In more recent studies comparing non-irradiated or fresh frozen allograft to autograft, these higher failure rates have not been consistently reported [11, 24, 26, 68, 135]. Notably, the literature suggests that allografts are now predominantly used in older and less active patients, two wellknown factors that lower graft failure rates [26, 85, 103]. This change in indication resulted due to higher graft failure rates observed in young and active individuals with the use of allograft [27, 57, 58, 96, 129]. The Multicenter Orthopaedic Outcomes Network (MOON) registry has shown that changing the indications for allograft based on patient age and sport activity have resulted in a 68% decrease in graft failure rates. However, the odds of failure with allograft in this study remained 9.5 times higher compared to autograft. [58]. Thus, although several systematic reviews and meta-analyses comparing autograft to non-irradiated or fresh frozen allograft have reported no significant differences in failure rates in older patients [24, 134, 136], the use of allograft in young and active individuals remains unacceptably high and is therefore not recommended in this age group [18, 50, 58, 63, 72, 126].

Strength recovery

Regaining normal extensor and flexor muscle strength after ACL-R, measured by a limb symmetry index (LSI) of > 90%, is a key focus of rehabilitation. The goal is to ensure safe return to sport and work, as inadequate strength has been associated with poorer function, altered biomechanics, and an increased risk of further knee injury [38, 116, 138]. Isokinetic strength testing is considered the "gold-standard" for postoperative strength

testing, however varied testing protocols limit the comparability of studies [43]. When comparing different graft options, recent systematic reviews and meta-analyses demonstrate different outcomes [56].

Comparing QT- to BPTB and HT, significantly increased isometric quadriceps weakness at 5–8 months postoperatively with QT, but no significant difference between groups at 9 to 15 months has been demonstrated [49]. Conversely, postoperative hamstring weakness at 5 to 8 months was more pronounced in the HT group compared with the QT group [49]. Other studies have reported similar results, with initial postoperative extensor strength deficits but equal results one year following ACL-R with QT [19, 29]. Isokinetic hamstring:quadriceps ratios are significantly higher for QT compared to HT [82, 117].

When using HT, isokinetic flexor strength is significantly reduced compared to QT, and the deficit may persist for up to two years [19, 29, 70]. Similar data, with no difference in extensor strength but decreased flexor strength when using HT, is also reported when comparing BPTB and HT [6, 42, 67]. Interestingly, a recent study showed that maximal hamstring strength, but not explosive hamstring strength improved over time following ACL-R using HT [114]. Comparing QT to BPTB, similar levels of quadriceps recovery have been observed in the short term [39, 51].

Return to sport

Return to sport (RTS) following ACL-R is a commonly utilized and clinically important outcome measure. Despite its prevalence, this outcome is often reported in a variety of ways, making it difficult to compare patient subgroups. A meta-analysis found an overall 82% RTS rate following ACL-R, however the rate dropped to 63% when looking at RTS at the same level [5]. Many factors are thought to impact RTS including patient factors such as age, gender, compliance with rehabilitation, and patient confidence, as well as surgical factors such as concomitant injuries and graft choice.

There are few studies in the literature specifically comparing graft choice and its impact on successful RTS, but the consensus appears to find no difference between various graft types. Currently, the literature shows no difference between BPTB and HT in RTS rates. A study focusing on 100 soccer players who underwent ACL-R with either BPTB or HT revealed an overall return to play rate of 72% at 1 year follow up with 85% of those patients returning at the same level or higher [12]. This study highlighted that graft choice did not predict RTS rates [12]. Similarly, a case control study looking at athletes under the age of 25 revealed a non-statistically significant difference in return to preinjury activity level

between BPTB patients (57%) and HT patients (43%) [84]. A recent meta-analysis looking at 2,348 athletes had similar findings, with no difference between HT and BPTB in initial return rates (81% and 71%, respectively), as well as no difference between rates of return to preinjury level (50% and 49%, respectively) [23].

In regard to QT, a retrospective study looking at 5-year follow up for 291 young active patients demonstrated a 73% RTS at preinjury level with a mean time of 8 months to return [32]. Although RTS rates for QT appear promising, there are few high-level studies comparing RTS rates with other graft types. A recent randomized controlled trial looking at patients 18 years or older who were randomized to ACL-R with either HT or QT revealed no difference in mean time to RTS at 2-year follow-up [47]. Similarly, a prospective cohort study of 875 patients revealed no difference RTS rates at preinjury level when comparing QT (67%) and HT (74%) [109].

While allograft is an uncommon graft choice in young athletes, the literature frequently reports no difference in RTS rates between autograft and allograft. A recent study compared 78 collegiate level soccer players who underwent ACLR with BPTB (66%), HT (17%), allograft (10%), and QT (1%). The overall mean RTS time was 6 months. There was no difference in RTS rates based on graft selection when comparing all autograft and allograft patients (QT: 100%, BPTB: 90%, HT: 77%, allograft: 75%) [48]. Conversely, a separate study compared 182 collegiate football players who underwent ACL-R with BPTB, HT, or allograft. Overall, 85% of players had autograft and 15% allograft, with the results indicating a significantly higher RTS rate of 85% in autograft compared to 69% in allograft patients [22].

While the current literature highlights that there may be no difference in RTS following ACL-R with various graft types, there is a need for further research on how to improve rates of return to the same level of sport amongst all graft types.

Complications and donor site morbidity

Surgical techniques continuously evolve not only to improve functional postoperative outcomes, but also to decrease complications and donor site morbidity. Knowledge of the various advantages and disadvantages of each graft option is fundamental to individualized ACL-R. Of course, one of the primary benefits of allograft use is the avoidance of donor site morbidity.

When considering complications and donor site morbidity related to graft choice, it is important to distinguish between minor and major complications. Minor donor site morbidities include persistent anterior knee pain, sensory loss of the lower leg, donor-site tendinopathy, scarring, cosmetic issues, and discomfort during kneeling (in patients without daily kneeling activities). Major complications besides graft rupture and contralateral ACL rupture include kneeling pain in patients who kneel during daily living, patellar fracture, extensor tendon rupture, and infection.

Anterior knee and kneeling pain is the most common postoperative complication related to graft choice, reported in up to 21.5% of patients [1]. Evidence suggests that patients treated with BPTB have a significantly higher incidence (up to 72%) of postoperative anterior knee and kneeling pain compared to those treated with HT (up to 44%) or QT (up to 9.3%), possibly attributable to injury of the infrapatellar nerve and/or irritating of the Hoffa fat pad during BPTB harvest [10, 33, 41, 81, 92, 104, 110, 111, 118, 125]. When comparing HT to QT, no significant differences [2, 92, 119, 127] or slightly better outcomes were reported for QT [71, 110]. These favorable outcomes for QT over HT were supported by a recent metanalysis [52].

While minor donor site morbidities are irritating, severe complications like patellar fracture or extensor tendon rupture have a major impact on a patient's life and recovery. Patella fracture after ACL-R with autograft using bone blocks ranges between 0.1% and 2% [39, 45, 61, 123], but may be as high as 8.8% when

including occult fractures [30]. Recently safe zones for bone block harvest have been described. A precise surgical technique is recommended, with harvest localization medial to midline and without exceeding 50% of the patellar thickness and patellar height [30, 93]. Compared to patella fractures, ruptures of the quadriceps or patella tendon after ACL-R are even rarer 1% and mainly reported only as case reports [69, 83, 87, 118].

Superficial and deep surgical site infection (SSI) after ACL-R is a rare but major complication, with an incidence between 0.32% and 1.1% [64, 75, 80]. Recently, evidence has emerged showing graft choice has an influence on the rate of postoperative SSI [64, 75, 80]. An up to eight times higher risk of SSI was reported in patients treated with HT compared to those with BPTB [75]. These findings have been confirmed by a recent large, single-center study showing that HT and allograft are associated with a five times higher risk of postoperative infection compared to BPTB [80]. When comparing all four graft options, QT seems to have the lowest rate of infection. The reason for differing rates of SSI with different graft options remains unclear, however contamination after harvest or preparation has been observed in up to 59.4% of cases and is the most accepted hypothesis [101, 132].

Compared to autografts, allografts have the advantage of reduced surgical time, lower donor site

Table 1 Advantages, disadvantages, and the optimal patient for different ACL graft options

Graft Type	Optimal Patient	Advantages	Disadvantages
QT	<35 years old High-level pivoting sport and/or high physical demand Work, activity or sport that requires kneeling Skeletally immature patients	Comparable graft rupture rates to BPTB Lower donor site morbidity than BPTB but comparable to HT Possibility of single side bone-block harvest Possibility of individualized graft size by har- vesting partial- or full thickness graft Less flexion strength loss compared to HT	No long-term outcomes Decreased extensor strength Risk of patellar fracture or quadriceps tendon rupture
ВРТВ	< 35 years old High-level pivoting sports high physical demand	Bone-to-bone healing and therefore possibly more aggressive rehabilitation Low graft rupture rates comparable to QT High return to sport rates	Highest rate of donor site morbidity and anterior knee pain Higher rates of OA progression Risk of patellar fracture or patella tendon rupture No option for skeletally immature patients Possible higher risk of contralateral ACL rupture Decreased extensor strength
НТ	Moderate sport and/or activity level Small ACL footprint Work, activity or sport that requires kneeling Skeletally immature patients	Lower donor site morbidity compared to BPTB Possibility of individualized graft size by additional gracilis tendon harvest and different graft configurations No risk for patellar fracture or extensor mechanism rupture Lower OA progression than BPTB	Higher graft rupture rates compared to QT and BPTB, especially in young and active patients Increased ATT after HT ACL-R, possibly due to reduction in hamstring force Tendency towards higher surgical site infection rates Decreased flexion strength
Allograft	> 40 years old Low activity level and/or physicalde- mand Multiligament Knee Injury	No donor site morbidity Faster operation time More predictable graft size	Higher graft rupture rates compared to QT and BPTB, especially in young and active patients Slower rehabilitation speed due to delayed graft maturation and incorporation Increased costs

morbidity, and more predictable graft size but are believed to have a higher infection rate compared to autografts [20, 50]. Although rare, there is a risk of contamination of the implanted allograft and pathogens are often highly virulent, such as Clostridium or other bowel microorganisms [50].

Authors' choice

With all graft options having advantages and drawbacks (Table 1), graft choice must be individualized and chosen in accordance with the patient. For primary ACL-R in adults, the authors prefer QT or allograft. For younger and active patients, the authors prefer QT-A because of its favorable biomechanical characteristics, predictable size, and faster incorporation compared to allograft (for details see "Current Trends In Graft Choice For Primary Anterior Cruciate Ligament Reconstruction-Part 1"). QT also demonstrates lower donor site morbidity compared to BPTB-A and a tendency towards lower graft re-rupture rates compared to HT, especially in highly active patients. Particularly in young and high-level athletes, the authors do not recommend the use of allograft, mainly due to the slower graft incorporation process which may result in excessive mechanical graft stress and higher failure rates when paired with the desire to quickly return to sport. In contrast, in older and less active patients, allograft is preferred due to shorter surgical times, lower donor site morbidity, and comparable PROs compared to autograft.

Conclusion

Graft choice affects postoperative outcomes after ACL-R and normal knee kinematics is not fully restored after surgery. Patients with hamstring tendon autograft may experience an increase in ATT and a decrease in flexion strength compared to those treated with BPTB or QT. Contrary, extensor strength is affected in patients with BPTB and QT. While patient reported outcomes are not influenced by graft choice, evidence suggests favorable postoperative graft rupture rates in patients treated with BPTB and QT autografts over HT or allografts. With regards to return to sports the consensus appears to find no difference between various graft types. Postoperative donor site morbidity is highest in BPTB, comparable between HT and QT and absent in allografts. With all graft options having advantages and drawbacks, graft choice must be individualized and chosen in accordance with the patient.

Acknowledgements

Emre Anil Özbek, MD was awarded a grant by ESSKA- University of Pittsburgh Sports Medicine Clinical and Research Fellowship, and The Scientific and Technological Research Council of Turkey (TUBITAK) outside the submitted work.

Authors' contributions

The author(s) read and approved the final manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL.
Study performed at Department of Orthopaedic Surgery, UPMC Freddie Fu
Sports Medicine Center, University of Pittsburgh, Pittsburgh, PA, USA.

Declarations

Competing interests

The authors declare no conflict of interest with the present study.

Received: 23 January 2023 Accepted: 22 March 2023 Published online: 04 April 2023

References

- Ajrawat P, Dwyer T, Whelan D, Theodoropoulos J, Murnaghan L, Bhargava M, Ogilvie-Harris D, Chahal J (2021) A comparison of quadriceps tendon autograft with bone-patellar tendon-bone autograft and hamstring tendon autograft for primary anterior cruciate ligament reconstruction: a systematic review and quantitative synthesis. Clin J Sport Med 31(4):392–399
- Akoto R, Albers M, Balke M, Bouillon B, Hoher J (2019) ACL reconstruction with quadriceps tendon graft and press-fit fixation versus quadruple hamstring graft and interference screw fixation - a matched pair analysis after one year follow up. BMC Musculoskelet Disord 20(1):109
- Andernord D, Bjornsson H, Petzold M, Eriksson BI, Forssblad M, Karlsson J, Samuelsson K (2014) Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: results from the Swedish national knee ligament register on 13,102 patients. Am J Sports Med 42(7):1574–1582
- Anderst W, Irrgang JJ, Fu FH, Tashman S, Karlsson J, Musahl V (2022) In search of a gold standard for objective clinical outcome: using dynamic biplane radiography to measure knee kinematics. Knee Surg, Sports Traumatol, Arthrosc 30(5):1499–1501
- Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45(7):596–606
- Arida C, Tsikrikas CG, Mastrokalos DS, Panagopoulos A, Vlamis J, Triantafyllopoulos IK (2021) Comparison of bone-patella tendon-bone and four-strand hamstring tendon grafts for anterior cruciate ligament reconstruction: a prospective study. Cureus 13(11):e19197
- Arnold MP, Calcei JG, Vogel N, Magnussen RA, Clatworthy M, Spalding T, Campbell JD, Bergfeld JA, Sherman SL, Group ACLS (2021) ACL Study Group survey reveals the evolution of anterior cruciate ligament reconstruction graft choice over the past three decades. Knee Surg Sports Traumatol Arthrosc 29(11):3871–3876
- Barié A, Sprinckstub T, Huber J, Jaber A (2020) Quadriceps tendon vs. patellar tendon autograft for ACL reconstruction using a hardware-free press-fit fixation technique: comparable stability, function and returnto-sport level but less donor site morbidity in athletes after 10 years. Arch Orthop Trauma Surg 140(10):1465–1474
- Belk JW, Kraeutler MJ, Marshall HA, Goodrich JA, McCarty EC (2018)
 Quadriceps tendon autograft for primary anterior cruciate ligament
 reconstruction: a systematic review of comparative studies with minimum 2-year follow-up. Arthroscopy 34(5):1699–1707
- Bjornsson H, Samuelsson K, Sundemo D, Desai N, Sernert N, Rostgard-Christensen L, Karlsson J, Kartus J (2016) A randomized controlled trial with mean 16-year follow-up comparing hamstring and patellar tendon autografts in anterior cruciate ligament reconstruction. Am J Sports Med 44(9):2304–2313
- Bottoni CR, Smith EL, Shaha J, Shaha SS, Raybin SG, Tokish JM, Rowles DJ (2015) Autograft versus allograft anterior cruciate ligament reconstruction: a prospective, randomized clinical study with a minimum 10-year follow-up. Am J Sports Med 43(10):2501–2509
- Brophy RH, Schmitz L, Wright RW, Dunn WR, Parker RD, Andrish JT, McCarty EC, Spindler KP (2012) Return to play and future ACL injury risk after ACL reconstruction in soccer athletes from the Multicenter

- Orthopaedic Outcomes Network (MOON) group. The Am J Sports Med 40(11):2517–2522
- 13. Carpenter RD, Majumdar S, Ma CB (2009) Magnetic resonance imaging of 3-dimensional in vivo tibiofemoral kinematics in anterior cruciate ligament-reconstructed knees. Arthroscopy 25(7):760–766
- Castoldi M, Magnussen RA, Gunst S, Batailler C, Neyret P, Lustig S, Servien E (2020) A randomized controlled trial of bone-patellar tendonbone anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis: 19-year clinical and radiological follow-up. Am J Sports Med 48(7):1665–1672
- Cavaignac E, Coulin B, Tscholl P, Nik Mohd Fatmy N, Duthon V, Menetrey J (2017) Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 years. Am J Sports Med 45(6):1326–1332
- Chen H, Tie K, Qi Y, Li B, Chen B, Chen L (2017) Anteromedial versus transtibial technique in single-bundle autologous hamstring ACL reconstruction: a meta-analysis of prospective randomized controlled trials. J Orthop Surg Res 12(1):167
- Cronstrom A, Tengman E, Hager CK (2023) Return to sports: a risky business? A systematic review with meta-analysis of risk factors for graft rupture following ACL reconstruction. Sports Med 53(1):91–110
- Cruz Al Jr, Beck JJ, Ellington MD, Mayer SW, Pennock AT, Stinson ZS, VandenBerg CD, Barrow B, Gao B, Ellis HB Jr (2020) Failure rates of autograft and allograft ACL reconstruction in patients 19 years of age and younger: a systematic review and meta-analysis. JB JS Open Access 5(4):e2000106
- Csapo R, Hoser C, Gfoller P, Raschner C, Fink C (2019) Fitness, knee function and competition performance in professional alpine skiers after ACL injury. J Sci Med Sport 22(Suppl 1):S39–S43
- Cusumano A, Capitani P, Messina C, De Girolamo L, Viganò M, Ravasio G, Facchini F, Sconfienza LM, Zerbi A, Schoenhuber H, Pozzoni R, Thiébat G (2022) Different timing in allograft and autograft maturation after primary anterior cruciate ligament reconstruction does not influence the clinical outcome at mid-long-term follow-up. Knee Surg, Sports Traumatol, Arthrosc 30(7):2281–2290
- 21. Dai W, Leng X, Wang J, Cheng J, Hu X, Ao Y (2022) Quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 50(12):3425–3439
- Daruwalla JH, Greis PE, Hancock R, Xerogeanes JW (2014) Rates and determinants of return to play after anterior cruciate ligament reconstruction in NCAA division 1 college football athletes: a study of the ACC, SEC, and PAC-12 conferences. Orthop J Sports Med 2(8):2325967114543901
- DeFazio MW, Curry EJ, Gustin MJ, Sing DC, Abdul-Rassoul H, Ma R, Fu F, Li X (2020) Return to sport after ACL reconstruction with a BTB versus hamstring tendon autograft: a systematic review and meta-analysis. Orthop J Sports Med 8(12):2325967120964919
- Dhillon J, Kraeutler MJ, Belk JW, Mccarty EC, Mcculloch PC, Scillia AJ (2022) Autograft and nonirradiated allograft for anterior cruciate ligament reconstruction demonstrate similar clinical outcomes and graft failure rates: an updated systematic review. Arthrosc, Sports Med Rehabil 4(4):e1513–e1521
- 25. Duerr RA, Ormseth B, DiBartola A, Geers K, Kaeding CC, Siston R, Flanigan DC, Magnussen RA (2023) Association of elevated posterior tibial slope with revision anterior cruciate ligament graft failure in a matched cohort analysis. Am J Sports Med 51(1):38–48
- Edgar CM, Zimmer S, Kakar S, Jones H, Schepsis AA (2008) Prospective comparison of auto and allograft hamstring tendon constructs for ACL reconstruction. Clin Orthop Relat Res 466(9):2238–2246
- Ellis HB, Matheny LM, Briggs KK, Pennock AT, Steadman JR (2012)
 Outcomes and revision rate after bone-patellar tendon-bone allograft versus autograft anterior cruciate ligament reconstruction in patients aged 18 years or younger with closed physes. Arthroscopy 28(12):1819–1825
- Fares A, Horteur C, Abou Al Ezz M, Hardy A, Rubens-Duval B, Karam K, Gaulin B, Pailhe R (2022) Posterior tibial slope (PTS) >/= 10 degrees is a risk factor for further anterior cruciate ligament (ACL) injury; BMI is not. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/ s00590-022-03406-9

- Fischer F, Fink C, Herbst E, Hoser C, Hepperger C, Blank C, Gfoller P (2018) Higher hamstring-to-quadriceps isokinetic strength ratio during the first post-operative months in patients with quadriceps tendon compared to hamstring tendon graft following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26(2):418–425
- 30. Fu FH, Rabuck SJ, West RV, Tashman S, Irrgang JJ (2019) Patellar fractures after the harvest of a quadriceps tendon autograft with a bone block: a case series. Orthop J Sports Med 7(3):2325967119829051
- Gabler CM, Jacobs CA, Howard JS, Mattacola CG, Johnson DL (2016) Comparison of graft failure rate between autografts placed via an anatomic anterior cruciate ligament reconstruction technique: a systematic review, meta-analysis, and meta-regression. Am J Sports Med 44(4):1069–1079
- 32. Galan H, Escalante M, Della Vedova F, Slullitel D (2020) All inside full thickness quadriceps tendon ACL reconstruction: long term follow up results. J Exp Orthop 7(1):13
- Geib TM, Shelton WR, Phelps RA, Clark L (2009) Anterior cruciate ligament reconstruction using quadriceps tendon autograft: intermediateterm outcome. Arthroscopy 25(12):1408–1414
- Gifstad T, Sole A, Strand T, Uppheim G, Grøntvedt T, Drogset JO (2013) Long-term follow-up of patellar tendon grafts or hamstring tendon grafts in endoscopic ACL reconstructions. Knee Surg, Sports Traumatol, Arthrosc 21(3):576–583
- Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G, Drogset JO (2014) Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 42(10):2319–2328
- Goetz G, de Villiers C, Sadoghi P, Geiger-Gritsch S (2020) allograft for Anterior Cruciate Ligament Reconstruction (ACLR): a systematic review and meta-analysis of long-term comparative effectiveness and safety. Results of a health technology assessment. Arthrosc Sports Med Rehabil 2(6):e873–e891
- 37. Gorschewsky O, Klakow A, Putz A, Mahn H, Neumann W (2007) Clinical comparison of the autologous quadriceps tendon (BQT) and the autologous patella tendon (BPTB) for the reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 15(11):1284–1292
- Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA (2016) Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 50(13):804–808
- Han HS, Seong SC, Lee S, Lee MC (2008) Anterior cruciate ligament reconstruction: quadriceps versus patellar autograft. Clin Orthop Relat Res 466(1):198–204
- Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62
- He X, Yang XG, Feng JT, Wang F, Huang HC, He JQ, Hu YC (2020) Clinical outcomes of the central third patellar tendon versus four-strand hamstring tendon autograft used for anterior cruciate ligament reconstruction: a systematic review and subgroup meta-analysis of randomized controlled trials. Injury 51(8):1714–1725
- Heijne A, Hagstromer M, Werner S (2015) A two- and five-year follow-up of clinical outcome after ACL reconstruction using BPTB or hamstring tendon grafts: a prospective intervention outcome study. Knee Surg Sports Traumatol Arthrosc 23(3):799–807
- 43. Herbawi F, Lozano-Lozano M, Lopez-Garzon M, Postigo-Martin P, Ortiz-Comino L, Martin-Alguacil JL, Arroyo-Morales M, Fernandez-Lao C (2022) A systematic review and meta-analysis of strength recovery measured by isokinetic dynamometer technology after anterior cruciate ligament reconstruction using quadriceps tendon autografts vs. hamstring tendon autografts or patellar tendon autografts. Int J Environ Res Public Health 19(11):6764
- Hofbauer M, Thorhauer ED, Abebe E, Bey M, Tashman S (2014) Altered tibiofemoral kinematics in the affected knee and compensatory changes in the contralateral knee after anterior cruciate ligament reconstruction. Am J Sports Med 42(11):2715–2721
- 45. Hogan DW, Burch MB, Rund JM, Geeslin DW, Ma R, Gray AF, Chu CR, Ray TE, Pullen WM, Sherman SL (2022) No difference in complication rates or patient-reported outcomes between bone-patella tendon-bone and

- quadriceps tendon autograft for anterior cruciate ligament reconstruction. Arthrosc Sports Med Rehabil 4(2):e417–e424
- Holm I, Oiestad BE, Risberg MA, Aune AK (2010) No difference in knee function or prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament with 4-strand hamstring autograft versus patellar tendon-bone autograft: a randomized study with 10-year follow-up. Am J Sports Med 38(3):448–454
- Horstmann H, Petri M, Tegtbur U, Felmet G, Krettek C, Jagodzinski M (2022) Quadriceps and hamstring tendon autografts in ACL reconstruction yield comparably good results in a prospective, randomized controlled trial. Arch Orthop Trauma Surg 142(2):281–289
- Howard JS, Lembach ML, Metzler AV, Johnson DL (2016) Rates and determinants of return to play after anterior cruciate ligament reconstruction in national collegiate athletic association division i soccer athletes: a study of the Southeastern conference. Am J Sports Med 44(2):433–439
- Hughes JD, Burnham JM, Hirsh A, Musahl V, Fu FH, Irrgang JJ, Lynch AD (2019) Comparison of short-term biodex results after anatomic anterior cruciate ligament reconstruction among 3 autografts. Orthop J Sports Med 7(5):2325967119847630
- Hulet C, Sonnery-Cottet B, Stevenson C, Samuelsson K, Laver L, Zdanowicz U, Stufkens S, Curado J, Verdonk P, Spalding T (2019) The use of allograft tendons in primary ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27(6):1754–1770
- Hunnicutt JL, Gregory CM, McLeod MM, Woolf SK, Chapin RW, Slone HS (2019) Quadriceps recovery after anterior cruciate ligament reconstruction with quadriceps tendon versus patellar tendon autografts. Orthop J Sports Med 7(4):2325967119839786
- 52. Hurley ET, Mojica ES, Kanakamedala AC, Meislin RJ, Strauss EJ, Campbell KA, Alaia MJ (2022) Quadriceps tendon has a lower re-rupture rate than hamstring tendon autograft for anterior cruciate ligament reconstruction a meta-analysis. J ISAKOS 7(2):87–93
- Iliopoulos E, Galanis N, Zafeiridis A, Iosifidis M, Papadopoulos P, Potoupnis M, Geladas N, Vrabas IS, Kirkos J (2017) Anatomic single-bundle anterior cruciate ligament reconstruction improves walking economy: hamstrings tendon versus patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 25(10):3155–3162
- Irvine JN, Arner JW, Thorhauer E, Abebe ES, D'Auria J, Schreiber VM, Harner CD, Tashman S (2016) Is there a difference in graft motion for bone-tendon-bone and hamstring autograft ACL reconstruction at 6 weeks and 1 year? Am J Sports Med 44(10):2599–2607
- Isaac DL, Beard DJ, Price AJ, Rees J, Murray DW, Dodd CA (2005) In-vivo sagittal plane knee kinematics: ACL intact, deficient and reconstructed knees. Knee 12(1):25–31
- Johnston PT, McClelland JA, Feller JA, Webster KE (2021) Knee muscle strength after quadriceps tendon autograft anterior cruciate ligament reconstruction: systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 29(9):2918–2933
- Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Consortium M Spindler KP (2015) Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions From the MOON Cohort. Am J Sports Med 43(7):1583–1590
- Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Hewett TE, Flanigan DC, Group MK, Spindler KP (2017) Change in anterior cruciate ligament graft choice and outcomes over time. Arthroscopy 33(11):2007–2014
- Kan SL, Yuan ZF, Ning GZ, Yang B, Li HL, Sun JC, Feng SQ (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis with trial sequential analysis. Medicine (Baltimore) 95(38):e4936
- Karpinski K, Haner M, Bierke S, Diermeier T, Petersen W (2021) Comparing knee laxity after anatomic anterior cruciate ligament reconstruction using quadriceps tendon versus semitendinosus tendon graft. Orthop J Sports Med 9(7):23259671211014850
- Kim SJ, Kumar P, Oh KS (2009) Anterior cruciate ligament reconstruction: autogenous quadriceps tendon-bone compared with bone-patellar tendon-bone grafts at 2-year follow-up. Arthroscopy 25(2):137–144
- 62. Kim SJ, Lee SK, Choi CH, Kim SH, Kim SH, Jung M (2014) Graft selection in anterior cruciate ligament reconstruction for smoking patients. Am J Sports Med 42(1):166–172

- 63. Kraeutler MJ, Bravman JT, McCarty EC (2013) Bone-patellar tendonbone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med 41(10):2439–2448
- Kraus Schmitz J, Lindgren V, Edman G, Janarv P-M, Forssblad M, Stålman A (2021) Risk factors for septic arthritis after anterior cruciate ligament reconstruction: a nationwide analysis of 26,014 ACL reconstructions. Am J Sports Med 49(7):1769–1776
- Kvist J, Kartus J, Karlsson J, Forssblad M (2014) Results from the Swedish national anterior cruciate ligament register. Arthroscopy 30(7):803–810
- Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR Jr (2017) What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res 475(10):2412–2426
- Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM (2008) Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 16(11):1009–1016
- Lawhorn KW, Howell SM, Traina SM, Gottlieb JE, Meade TD, Freedberg HI (2012) The effect of graft tissue on anterior cruciate ligament outcomes: a multicenter, prospective, randomized controlled trial comparing autograft hamstrings with fresh-frozen anterior tibialis allograft. Arthroscopy 28(8):1079–1086
- Lee GH, McCulloch P, Cole BJ, Bush-Joseph CA, Bach BR Jr (2008) The incidence of acute patellar tendon harvest complications for anterior cruciate ligament reconstruction. Arthroscopy 24(2):162–166
- 70. Lee JK, Lee S, Lee MC (2016) Outcomes of anatomic anterior cruciate ligament reconstruction: bone-quadriceps tendon graft versus double-bundle hamstring tendon graft. Am J Sports Med 44(9):2323–2329
- Lind M, Nielsen TG, Soerensen OG, Mygind-Klavsen B, Faunø P (2020)
 Quadriceps tendon grafts does not cause patients to have inferior subjective outcome after anterior cruciate ligament (ACL) reconstruction
 than do hamstring grafts: a 2-year prospective randomised controlled
 trial. Br J Sports Med 54(3):183–187
- Liu Y, Liu X, Liu Y, Yang S (2022) Comparison of clinical outcomes of using the nonirradiated and irradiated allograft for anterior cruciate ligament (ACL) reconstruction: A systematic review update and metaanalysis. Medicine (Baltimore) 101(32):e29990
- 73. Lund B, Nielsen T, Faunø P, Christiansen SE, Lind M (2014) Is quadriceps tendon a better graft choice than patellar tendon? a prospective randomized study. Arthroscopy 30(5):593–598
- 74. Maletis GB, Inacio MC, Desmond JL, Funahashi TT (2013) Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Joint J 95-B(5):623–628
- Maletis GB, Inacio MC, Reynolds S, Desmond JL, Maletis MM, Funahashi TT (2013) Incidence of postoperative anterior cruciate ligament reconstruction infections: graft choice makes a difference. Am J Sports Med 41(8):1780–1785
- Maletis GB, Inacio MC, Funahashi TT (2015) Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med 43(3):641–647
- Maletis GB, Chen J, Inacio MC, Funahashi TT (2016) Age-related risk factors for revision anterior cruciate ligament reconstruction: a cohort study of 21,304 patients from the Kaiser Permanente anterior cruciate ligament registry. Am J Sports Med 44(2):331–336
- Maletis GB, Chen J, Inacio MCS, Love RM, Funahashi TT (2017) Increased risk of revision after anterior cruciate ligament reconstruction with bone-patellar tendon-bone allografts compared with autografts. Am J Sports Med 45(6):1333–1340
- Maletis GB, Chen J, Inacio MCS, Love RM, Funahashi TT (2017) Increased risk of revision after anterior cruciate ligament reconstruction with soft tissue allografts compared with autografts: graft processing and time make a difference. Am J Sports Med 45(8):1837–1844
- 80. Marom N, Kapadia M, Nguyen JT, Ammerman B, Boyle C, Wolfe I, Halvorsen KC, Miller AO, Henry MW, Brause BD, Hannafin JA, Marx RG, Ranawat AS (2022) Factors associated with an intra-articular infection after anterior cruciate ligament reconstruction: a large single-institution cohort study. Am J Sports Med 50(5):1229–1236

- Marques FDS, Barbosa PHB, Alves PR, Zelada S, Nunes RPDS, De Souza MR, Pedro MDAC, Nunes JF, Alves WM, De Campos GC (2020) Anterior knee pain after anterior cruciate ligament reconstruction. Orthop J Sports Med 8(10):232596712096108
- Martin-Alguacil JL, Arroyo-Morales M, Martín-Gomez JL, Monje-Cabrera IM, Abellán-Guillén JF, Esparza-Ros F, Lozano ML, Cantarero-Villanueva I (2018) Strength recovery after anterior cruciate ligament reconstruction with quadriceps tendon versus hamstring tendon autografts in soccer players: a randomized controlled trial. Knee 25(4):704–714
- Marumoto JM, Mitsunaga MM, Richardson AB, Medoff RJ, Mayfield GW (1996) Late patellar tendon ruptures after removal of the central third for anterior cruciate ligament reconstruction. A report of two cases. Am J Sports Med 24(5):698–701
- 84. Mascarenhas R, Tranovich MJ, Kropf EJ, Fu FH, Harner CD (2012) Bonepatellar tendon-bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: a retrospective matched analysis with 2–10 year follow-up. Knee Surg Sports Traumatol Arthrosc 20(8):1520–1527
- 85. Mehta VM, Mandala C, Foster D, Petsche TS (2010) Comparison of revision rates in bone-patella tendon-bone autograft and allograft anterior cruciate ligament reconstruction. Orthopedics 33(1):12
- Migliorini F, Eschweiler J, Mansy YE, Quack V, Tingart M, Driessen A (2020) Quadriceps tendon autograft for primary ACL reconstruction: a Bayesian network meta-analysis. Eur J Orthop Surg Traumatol 30(7):1129–1138
- Miller MD, Nichols T, Butler CA (1999) Patella fracture and proximal patellar tendon rupture following arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 15(6):640–643
- Mohtadi N, Chan D, Barber R, Oddone Paolucci E (2015) A randomized clinical trial comparing patellar tendon, hamstring tendon, and doublebundle ACL reconstructions: patient-reported and clinical outcomes at a minimal 2-year follow-up. Clin J Sport Med 25(4):321–331
- Mohtadi N, Chan D, Barber R, Paolucci EO (2016) Reruptures, reinjuries, and revisions at a minimum 2-year follow-up: a randomized clinical trial comparing 3 graft types for ACL reconstruction. Clin J Sport Med 26(2):96–107
- Mohtadi NG, Chan DS, Dainty KN, Whelan DB (2011) Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev. 2011(9):CD005960. https:// doi.org/10.1002/14651858.CD005960.pub29):CD005960
- 91. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E (2019) Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts. Am J Sports Med 47(14):3531–3540
- 92. Mouarbes D, Dagneaux L, Olivier M, Lavoue V, Peque E, Berard E, Cavaignac E (2020) Lower donor-site morbidity using QT autografts for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 28(8):2558–2566
- 93. Negrin LL, Zeitler C, Hofbauer M (2021) Patellar size variation at the quadriceps tendon-bone block harvest site: a magnetic resonance imaging study to evaluate the safe zone for harvesting a sufficient bone block. Am J Sports Med 49(14):3850–3858
- Nyland J, Collis P, Huffstutler A, Sachdeva S, Spears JR, Greene J, Caborn DNM (2020) Quadriceps tendon autograft ACL reconstruction has less pivot shift laxity and lower failure rates than hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 28(2):509–518
- 95. Ortmaier R, Fink C, Schobersberger W, Kindermann H, Leister I, Runer A, Hepperger C, Blank C, Mattiassich G (2021) Return to sports after anterior cruciate ligament injury: a matched-pair analysis of repair with internal brace and reconstruction using hamstring or quadriceps tendons. Sportverletz Sportschaden 35(1):36–44
- Pallis M, Svoboda SJ, Cameron KL, Owens BD (2012) Survival comparison of allograft and autograft anterior cruciate ligament reconstruction at the United States Military Academy. Am J Sports Med 40(6):1242–1246
- Papannagari R, Gill TJ, Defrate LE, Moses JM, Petruska AJ, Li G (2006) In vivo kinematics of the knee after anterior cruciate ligament reconstruction: a clinical and functional evaluation. Am J Sports Med 34(12):2006–2012
- 98. Parkkari J, Pasanen K, Mattila VM, Kannus P, Rimpela A (2008) The risk for a cruciate ligament injury of the knee in adolescents and young adults:

- a population-based cohort study of 46 500 people with a 9 year followup. Br J Sports Med 42(6):422–426
- 99. Pennock AT, Johnson KP, Turk RD, Bastrom TP, Chambers HG, Boutelle KE, Edmonds EW (2019) Transphyseal anterior cruciate ligament reconstruction in the skeletally immature: quadriceps tendon autograft versus hamstring tendon autograft. Orthop J Sports Med 7(9):2325967119872450
- 100. Perez JR, Emerson CP, Barrera CM, Greif DN, Cade WH 2nd, Kaplan LD, Baraga MG (2019) Patient-reported knee outcome scores with soft tissue quadriceps tendon autograft are similar to bone-patellar tendonbone autograft at minimum 2-year follow-up: a retrospective singlecenter cohort study in primary anterior cruciate ligament reconstruction surgery. Orthop J Sports Med 7(12):2325967119890063
- Pérez-Prieto D, Portillo ME, Torres-Claramunt R, Pelfort X, Hinarejos P, Monllau JC (2018) Contamination occurs during ACL graft harvesting and manipulation, but it can be easily eradicated. Knee Surg, Sports Traumatol, Arthrosc 26(2):558–562
- 102. Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM, Fevang JM (2014) Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian cruciate ligament registry, 2004–2012. Am J Sports Med 42(2):285–291
- Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ, Holden MB, Martin DF, Smith BP (2005) Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy 21(7):774–785
- 104. Poehling-Monaghan KL, Salem H, Ross KE, Secrist E, Ciccotti MC, Tjoumakaris F, Ciccotti MG, Freedman KB (2017) Long-term outcomes in anterior cruciate ligament reconstruction: a systematic review of patellar tendon versus hamstring autografts. Orthop J Sports Med 5(6):2325967117709735
- 105. Rahardja R, Zhu M, Love H, Clatworthy MG, Monk AP, Young SW (2020) Rates of revision and surgeon-reported graft rupture following ACL reconstruction: early results from the New Zealand ACL registry. Knee Surg Sports Traumatol Arthrosc 28(7):2194–2202
- 106. Rahardja R, Zhu M, Love H, Clatworthy MG, Monk AP, Young SW (2020) Effect of graft choice on revision and contralateral anterior cruciate ligament reconstruction: results from the New Zealand ACL REgistry. Am J Sports Med 48(1):63–69
- 107. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M (2014) Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the danish registry of knee ligament reconstruction. Am J Sports Med 42(2):278–284
- 108. Rizvanovic D, Walden M, Forssblad M, Stalman A (2023) Surgeon's experience, sports participation and a concomitant MCL injury increase the use of patellar and quadriceps tendon grafts in primary ACL reconstruction: a nationwide registry study of 39,964 surgeries. Knee Surg Sports Traumatol Arthrosc 31(2):475-486
- 109. Runer A, Csapo R, Hepperger C, Herbort M, Hoser C, Fink C (2020) Anterior cruciate ligament reconstructions with quadriceps tendon autograft result in lower graft rupture rates but similar patient-reported outcomes as compared with hamstring tendon autograft: a comparison of 875 patients. Am J Sports Med 48(9):2195–2204
- 110. Runer A, Suter A, Roberti di Sarsina T, Jucho L, Gfoller P, Csapo R, Hoser C, Fink C (2022) Quadriceps tendon autograft for primary anterior cruciate ligament reconstruction show comparable clinical, functional, and patient-reported outcome measures, but lower donor-site morbidity compared with hamstring tendon autograft: A matched-pairs study with a mean follow-up of 6.5 years. J ISAKOS. https://doi.org/10.1016/j.jisako.2022.08.00852059-7754(2022)00083-00089.
- 111. Runer A, Wierer G, Herbst E, Hepperger C, Herbort M, Gfoller P, Hoser C, Fink C (2018) There is no difference between quadriceps- and hamstring tendon autografts in primary anterior cruciate ligament reconstruction: a 2-year patient-reported outcome study. Knee Surg Sports Traumatol Arthrosc 26(2):605–614
- 112. Sajovic M, Stropnik D, Skaza K (2018) Long-term comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: A 17-year follow-up of a randomized controlled trial. Am J Sports Med 46(8):1800–1808

- 113. Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ (2017) Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res 475(10):2459–2468
- 114. San Jose AT, Maniar N, Timmins RG, Beerworth K, Hampel C, Tyson N, Williams MD, Opar DA (2023) Explosive hamstrings strength asymmetry persists despite maximal hamstring strength recovery following anterior cruciate ligament reconstruction using hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 31(1):299–307
- 115. Schmidt T, Hoburg A, Broziat C, Smith MD, Gohs U, Pruss A, Scheffler S (2012) Sterilization with electron beam irradiation influences the biomechanical properties and the early remodeling of tendon allografts for reconstruction of the anterior cruciate ligament (ACL). Cell Tissue Banking 13(3):387–400
- Schmitt LC, Paterno MV, Hewett TE (2012) The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42(9):750–759
- Sinding KS, Nielsen TG, Hvid LG, Lind M, Dalgas U (2020) Effects of autograft types on muscle strength and functional capacity in patients having anterior cruciate ligament reconstruction: a randomized controlled trial. Sports Med 50(7):1393–1403
- 118. Singh H, Glassman I, Sheean A, Hoshino Y, Nagai K, de Sa D (2023) Less than 1% risk of donor-site quadriceps tendon rupture post-ACL reconstruction with quadriceps tendon autograft: a systematic review. Knee Surg Sports Traumatol Arthrosc 31(2):572–585
- 119. Sofu H, Sahin V, Gursu S, Yildirim T, Issin A, Ordueri M (2013) Use of quadriceps tendon versus hamstring tendon autograft for arthroscopic anterior cruciate ligament reconstruction: a comparative analysis of clinical results. Eklem Hastalik Cerrahisi 24(3):139–143
- Tan TK, Subramaniam AG, Ebert JR, Radic R (2022) Quadriceps tendon versus hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 50(14):3974–3986
- Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004)
 Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983
- 122. Tashman S, Zandiyeh P, Irrgang JJ, Musahl V, West RV, Shah N, Fu FH (2021) Anatomic single- and double-bundle ACL reconstruction both restore dynamic knee function: a randomized clinical trial—part II: knee kinematics. Knee Surg, Sports Traumatol, Arthrosc 29(8):2676–2683
- Tay GH, Warrier SK, Marquis G (2006) Indirect patella fractures following ACL reconstruction: a review. Acta Orthop 77(3):494–500
- 124. Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB (2015) Revision risk after allograft anterior cruciate ligament reconstruction: association with graft processing techniques, patient characteristics, and graft type. Am J Sports Med 43(11):2696–2705
- 125. Thompson SM, Salmon LJ, Waller A, Linklater J, Roe JP, Pinczewski LA (2016) Twenty-year outcome of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon or hamstring autograft. Am J Sports Med 44(12):3083–3094
- 126. Tian S, Wang B, Liu L, Wang Y, Ha C, Li Q, Yang X, Sun K (2016) Irradiated hamstring tendon allograft versus autograft for anatomic doublebundle anterior cruciate ligament reconstruction: midterm clinical outcomes. Am J Sports Med 44(10):2579–2588
- 127. Todor A, Nistor DV, Caterev S (2019) Clinical outcomes after ACL reconstruction with free quadriceps tendon autograft versus hamstring tendons autograft. A retrospective study with a minimal follow-up two years. Acta Orthop Traumatol Turc 53(3):180–183
- 128. Wang HD, Zhu YB, Wang TR, Zhang WF, Zhang YZ (2018) Irradiated allograft versus autograft for anterior cruciate ligament reconstruction: A meta-analysis and systematic review of prospective studies. Int J Surg 49:45–55
- Wasserstein D, Sheth U, Cabrera A, Spindler KP (2015) A systematic review of failed anterior cruciate ligament reconstruction with autograft compared with allograft in young patients. Sports Health 7(3):207–216
- Webster KE, Feller JA, Hartnett N, Leigh WB, Richmond AK (2016)
 Comparison of patellar tendon and hamstring tendon anterior cruciate

- ligament reconstruction: a 15-year follow-up of a randomized controlled trial. Am J Sports Med 44(1):83–90
- Winkler PW, Wagala NN, Hughes JD, Lesniak BP, Musahl V (2022) A high tibial slope, allograft use, and poor patient-reported outcome scores are associated with multiple ACL graft failures. Knee Surg, Sports Traumatol, Arthrosc 30(1):139–148
- 132. Wu C, Zhang X, Qiao Y, Chen J, Su W, Xu J, Ye Z, Jiang J, Xu C, Xie G, Zhao J, Zhao S (2022) Allograft contamination during suture preparation for anterior cruciate ligament reconstruction: an ex vivo study. Knee Surg, Sports Traumatol, Arthrosc 30(7):2400–2407
- 133. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q (2015) A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 22(2):100–110
- 134. Yang X-G, Wang F, He X, Feng J-T, Hu Y-C, Zhang H, Yang L, Hua K (2020) Network meta-analysis of knee outcomes following anterior cruciate ligament reconstruction with various types of tendon grafts. Int Orthop 44(2):365–380
- Yoo SH, Song EK, Shin YR, Kim SK, Seon JK (2017) Comparison of clinical outcomes and second-look arthroscopic findings after ACL reconstruction using a hamstring autograft or a tibialis allograft. Knee Surg Sports Traumatol Arthrosc 25(4):1290–1297
- 136. Zeng C, Gao SG, Li H, Yang T, Luo W, Li YS, Lei GH (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews. Arthroscopy 32(1):153-163 e118
- Zhao D, Pan JK, Lin FZ, Luo MH, Liang GH, Zeng LF, Huang HT, Han YH, Xu NJ, Yang WY, Liu J (2022) Risk Factors for Revision or Rerupture After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Am J Sports Med. https://doi.org/10.1177/0363546522 11197873635465221119787.
- 138. Zwolski C, Schmitt LC, Quatman-Yates C, Thomas S, Hewett TE, Paterno MV (2015) The influence of quadriceps strength asymmetry on patient-reported function at time of return to sport after anterior cruciate ligament reconstruction. Am J Sports Med 43(9):2242–2249

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com